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Abstract In this paper a framework for automatic online workflow recogni-
tion in industrial environments where the issue of concurrent activities rises,
is presented. The framework consists of three main parts: The first part is de-
voted to detecting activity in specific Regions of Interest (ROIs) of the video
sequence. This is effected by separating each frame into ROIs and representing
the resulting subimages through feature vectors. By observing these vectors
we can determine when there is action in a particular ROI. The second part of
the framework lies in examining whether the detected activity corresponds to
a workflow related event. This is accomplished by HMM modeling. Finally, the
third part employs a string matching based technique to confirm the validity
of the observed sequence of events or correct any detection or classification
errors. This last step also addresses a top down approach by informing lower
system levels (such as image representation or object tracking) about the errors
committed. The performance of the proposed approach is thoroughly evalu-
ated under real-life complex visual workflow understanding scenarios, in an
industrial plant. The obtained results are compared and discussed.
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1 Introduction

Event and activity recognition are domains with significant usefulness in a
wide range of applications, thus attracting the interest of many researchers in
the areas of computer vision, machine learning, multimedia and image process-
ing. One of the most popular applications is smart monitoring of large-scale
enterprises, such as industrial assembly lines, where the importance of activity
recognition relates to the safety and security of the staff, the reduction of cost,
production scheduling, as well as the quality of the production process. The
latter is guaranteed by enforcing adherence to strictly predefined procedures
and activities for production or service provision.

In most current approaches the goal is either to detect activities, which
may deviate from the norm, or to classify some isolated activities. Attempts
to address the problem under discussion are encumbered by a number of impor-
tant hindering factors; the high diversity of the actions and types of activities
that constitute a workflow and have to be recognized, is one of the most im-
portant among those. The complexity of static object detection and moving
object tracking, with the occlusions and illumination changes, naturally affect
adversely approaches that follow the bottom-up approach.

Despite the above impediments, focusing on monitoring the production
line of an industrial plant (such as an automobile manufacturer), which is a
fairly structured process, makes modeling of the activities more realistic than
in the case of a more unsystematic area of interest, e.g. an airport or a service
maintenance system. The former processes are often hierarchically structured
as workflows, that comprise sequential tasks.

In [13,5] workflow recognition is achieved with good success rates in an in-
dustrial use case like the one described, where however two important assump-
tions hold: i. the sequences are considered to be appropriately pre-segmented
by an expert user, thus decreasing the industrial impact and ii. the workflows in
the dataset are very well structured comprising mostly non-overlapping tasks,
which is often not the case in real world industrial applications. Regarding the
former, a framework that can provide online automatic activity and workflow
recognition is bound to have a far more significant industrial impact. As for
the latter, it is clear that an image-based feature vector representing a frame
where two different tasks are executed in parallel is less successfully handled
by the classification model (for the model of the first task, the visual content
related to the second task is noise, and vice versa), in comparison to the case
where there is no overlap. Moreover, multi-object detection and tracking based
methods are also doomed to failure in such complex environments. Therefore
the need to address the issue of activity and workflow recognition in com-
plex datasets with overlapping or simultaneous activities and more relaxed
structure is apparent.

Additionally, most systems tend to only follow the bottom-up paradigm,
i.e. beginning from low level image analysis or object detection/tracking and
moving upwards to motion analysis, action/activity recognition and behavior
modeling. On the contrary the reverse top-down pathway, i.e., exploiting higher



Top-down event-driven online workflow recognition 3

level behavior recognition results to influence lower level image analysis, has
been much less researched upon.

Taking these observations into consideration, the work presented in this
paper contributes mainly in the following ways:

– We propose an online automatic workflow recognition framework for in-
dustrial monitoring, which is a novel contribution to our knowledge.

– We address the challenging issue of recognizing different simultaneous ac-
tivities that partially or entirely overlap by breaking down the workflows
into spatially confined events and by defining and observing appropriate
Regions of Interest (ROI).

– The proposed framework also makes an attempt to implement the top-
down pathway, by allowing the higher level event and workflow recognition
results inform the lower level image analysis.

The remainder of this paper is structured as follows: Related work regard-
ing event and activity recognition is discussed in Section 2, while the problem
formulation is presented in Section 3. In Section 4 we describe the event model-
ing, while in Section 5 we present the online automatic recognition framework.
The experimental setup and the outcoming results are described and analyzed
in Section 6. Finally, Section 7 concludes the paper with a summary of the
findings.

2 Related work

Event detection and especially human action recognition has been the focus
of interest of computer vision and machine learning communities for years,
mostly as isolated activities and not as part of a continuous process. A variety
of methods has addressed these problems, including semilatent topic mod-
els [24], spatial-temporal context [9], optical flow and kinematic features [2],
and random trees and Hough transform voting [27]. Wada et al. [22] employ
Non-deterministic Finite Automaton as a sequence analyzer to present an ap-
proach for multiobject behavior recognition based on behavior driven selective
attention. Other works focus on more specific domains, e.g., event detection in
sports [20], [11], retrieving actions in movies [14], human gesture recognition
(using Dynamic Time Warping [3] and Time Delay Neural Networks [26]), and
automatic discovery of activities [8]. Comprehensive literature reviews regard-
ing isolated human action recognition can be found in [1], [10].

One of the key functionalities of any machine learning model (classifier)
suitable for application in visual behavior understanding is the ability to ex-
tract the signature of a behavior from the captured visual input. The key
requirements when designing such a classifier is (a) to support task execution
in various time scales, since a task or parts of it may have variable dura-
tion; and (b) to support stochastic processes, because of the task intra-class
variability and noise.

A very flexible framework for stochastic classification of time series is the
HMM (see e.g., [19]). It can be easily extended to handle outliers (see e.g., [4])



4 Athanasios S. Voulodimos et al.

and to fuse multiple streams (e.g., [28]). It is very efficient for application in
previously segmented sequences (see e.g.[12]), however, when the boundaries
of the sequence that we aim to classify are not known in advance, the search
space of all possible beginning and end points make the search very inefficient
[6]. A typical way to treat this problem is given in [16], where a dynamic pro-
gramming algorithm of cost which is proportional to the cube of the duration,
is used to perform segmentation and classify then the segments; such a cost is
restrictive in real applications.

In the past there have been some efforts to exploit the hierarchical struc-
ture of some time series, e.g., by using the hierarchical HMMs [7]. Each state
is considered to be a self-contained probabilistic model (an HHMM). Exam-
ples of such approaches can be found in [18], where the worflow in a hospital
operating room is described. Another approach is the layered hidden Markov
model (LHMM) (see [17]), which consists of N levels of HMMs where the
HMMs on level N + 1 corresponds to observation symbols or probability gen-
erators at level N . Every level i of the LHMM consists of Ki HMMs running in
parallel. In that work a LHMM is used for event identification in meetings. In
[25] structure learning in HMMs is addressed in order to obtain temporal de-
pendencies between high-level events for video segmentation. A HMM models
the simultaneous output of event-classifiers to filter the wrong detections.

In many workflows, such as in industrial production where a sequence of
different tasks has to be completed, the execution of a task means that it
will not appear again in the same workflow. Therefore the whole history of
tasks must be kept in memory to exclude false positives and the Markovian
property is obviously not applicable. Thus, approaches such as the LHMM and
the HHMM have an inherent problem to describe such workflows.

3 Problem statement

In this paper the focus is on detecting and recognizing visual tasks in complex
industrial processes (workflows), being executed in an automobile production
line. The visual tasks are recognized from visual cues being captured from a
camera.

A workflow is a process that happens repetitively and consists of a se-
quence of discrete tasks. The order in which tasks appear matters, however
permutations are allowed in some cases (which have to be learned). Tasks may
have different durations, as a result of the natural differences in workers’ pro-
ductivity and other situational parameters. The definition of tasks stems from
domain knowledge. An example of such a task is: ”A worker picks part1 from
rack1 and places it on the welding cell”. The goal is to determine which tasks
are executed and when, given instances of workflows, which are described by
sequences of visual observations, so as to automatically ”supervise” the suc-
cessful completion of workflows.

Nevertheless, the significant overlap between task execution described in
Section 1 dictates a necessary adjustment to the above described formulation.
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To address the issue of simultaneity, we split the tasks into shorter sub-tasks
or ”events”, whose appropriate execution according to a rule system indicates
the execution of tasks, and consequently the completion of workflows. The
sub-tasks/”events” definition is done in such a way to ensure the fulfillment
of the following assumptions:

1. Workflow recognition is possible through the events recognition combined
with an intelligent events combination and evaluation system .

2. Events are as spatially confined as possible, so that they can be observed
in specific Regions Of Interest (ROIs) efficiently.

3. Events are as temporally short as possible so that the simultaneity phe-
nomenon is less frequent.

A more formal statement of the problem under discussion would be the
following: Given an image sequence I = {I0, . . . , It} and a set of E+1 possible
events/”subtasks”, E# = {1, . . . , E,#}, where # corresponds to activity not
related to the workflow, we want to associate an event e?A ∈ E# with a time
interval Ak : [tsk, tek], k = 1, 2, ..., E, where tsk and tek are the starting and
ending times of the event k in the workflow and, in general, Am ∩ An 6= ∅,
subject to a R(ek) set of constraints. The aforementioned constraints pertain
to the particularities and interdependencies of the observed industrial process,
where different permutations are allowed.

4 Event modeling

Here we describe the representation of the sub-tasks/events to be recognized.
In subsection 4.1 we present means of representation of each frame, while in
subsection 4.2 we present the HMM for modeling time series.

4.1 Visual Observations

One of the key challenges real-time action recognition systems are confronted
with concerns selection of appropriate features for representing the observed
raw data. The ideal features should describe different actions accurately, with
high discrimination capability, and should be efficiently calculated. Ideally,
these features should also provide a hierarchical representation scheme (coarse
to fine) so that a desirable, application-wise trade-off between representation
capabilities and computational complexity can be reached.

The employment of features directly extracted from the video frames has
the significant advantage of obviating the need of detecting and tracking the
salient scene objects, a task which is notoriously difficult in cases of occlu-
sions, target deformations, illumination changes, etc. Thus, by using such an
approach, the intermediate levels of semantic complexity, as met in typical
bottom-up systems, are completely bypassed. For this purpose, either local or
holistic features (or both [21]) may be used. Holistic features remedy these
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Fig. 1 Depiction of six ROIs defined in the working area of the automobile manufacturer
dataset. Each ROI observes the execution of one or more events

drawbacks of local features, while also requiring a much less tedious com-
putational procedure for their extraction. In [12], we have described how to
represent pixel change history (which is able to capture the motion history of
foreground objects) using the Zernike moments.

However, addressing the challenge of concurrent events taking place in dif-
ferent parts of the image requires us to take this approach further. The first
step is to define appropriate Regions of Interest (ROI), so that every event
takes place in a specific ROI (however a given ROI may be the area of exe-
cution of more than one events). The selection of ROIs naturally depends on
the particularities of the application to be monitored, nonetheless as a general
rule their number and size should be such as to avoid both having many events
happening in the same ROI and observing an unreasonably large number of
ROIs, which would have computational cost and reduce the framework’s im-
pact. Figure 1 depicts the ROIs defined for our automobile industry production
line dataset.

In our approach, the feature extraction process described above is per-
formed for each ROI of every frame separately. Each frame will therefore be
represented by R feature vectors (descriptors) ort , one for each observed ROI,
where t is the time instance, or in discrete domain the frame number, and
r = 1 ..R the ROI.

4.2 Single event modeling and recognition through HMM

In this subsection we briefly describe the modeling process for the observed
events. A common approach for stochastically modeling time series is to use
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Hidden Markov Models (HMMs). A Hidden Markov Model consists of states,
transitions, observations and probabilistic behavior, and is formally defined as
a tuple λ = 〈Q,A,B, π〉 satisfying the following conditions:

– Q = {q1, ..., qS} is a finite set of S states. In our case, the number of states
is an indication of the order (complexity) of the stochastic representation.

– A is the transition matrix, which represents the transition probabilities
between states.

– B is the observation matrix, which represents the observation probability
given the state.

– π represents the probability of each state at the beginning of the sequence.

A supervised training algorithm is used to obtain the parameters λ of the
HMM. The training set is formed using representative samples of industrial
tasks or, in our case, subtasks/events which have been manually (supervis-
edly) classified to one of the L available classes. This implies that we need
first to annotate the tasks/events, exploiting, for example, the experience of
industrial engineers. We also need to identify the start and finish times for
each industrial workflow even during the testing phase something which is a
burden for a real-life exploitation of the algorithm in industrial environments.
In real-world scenarios it is usually unknown when a task starts or finishes.
Therefore, HMM modeling by itself can not be used for online recognition of
the tasks. This is because online classification requires searching in the space
of possible beginning and end points to perform Viterbi matches in order to
find the optimally fitting sequence [19].

Assuming that tasks’ appearance follow Markovian behavior (the condi-
tional probability distribution of future tasks depends only upon the present
task; that is, given the present, the future does not depend on the past) it is
possible to perform online classification by applying techniques such as hierar-
chical (HHMM) and Layer hidden Markov models (LHMM) [7] [17]. However,
such assumptions are not true in a real-world industrial environment, since
the processes considered are structured. Usually, in a real-world production
environment, the current execution of a task will affect the execution of future
tasks, i.e., a task may be executed only once in a workflow.

All the above imply that the use of a sole conventional HMM for stochas-
tically classifying industrial tasks is overall inefficient, especially for real world
sequences, which typically contain several thousands of frames. An exhaustive
search for all possible combinations would be therefore practically prohibitive
from a computational point of view. Hence, for an online automatic recognition
framework, we need to identify the time boundaries, that is the start and finish
times of an industrial task or subtask/event, which are part of a workflow. For
this reason, we propose an alternative methodology that incorporates HMM
into a framework that exploits the information given by the ROI-specific vi-
sual observation vectors described in subsection 4.1 and evaluates/combines
recognition results via a top-down approach.
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5 The online automatic workflow recognition framework

Algorithm 1 presents the steps of the proposed online event driven workflow
recognition framework, which is described in detail in the subsections to follow.

5.1 Activity detection in ROIs

The first phase of the online recognition framework (lines 15-36 of Algorithm 1)
consists of image representation for every frame and detection of change in spe-
cific ROIs of the observed sequence. For every frame captured by the surveil-
lance camera, r different subimages are created corresponding to the r ROIs
defined. For each of the r subimages a feature vector representing that partic-
ular subimage is calculated as described in [12]. Each frame F corresponding
to time t is therefore represented by r different feature vectors ort, one for
each ROI. As explained in subsection 4.1, these features are based on Pixel
Change History; a zero feature vector thus indicates lack of visual change in
the subimage, and consequently lack of activity in the respective ROI as well.
As a result, the appearance of a non-zero feature vector after a series of many
consecutive zero vectors denotes the beginning of some sort of activity in that
ROI, whether it be a workflow related event or irrelevant action. As soon as
some sort of activity is detected, the framework ”observes” the continuation
of this activity in the specific ROI by buffering the successive non-zero feature
vectors to form a ”candidate” sequence of vectors that might correspond to
an event. This candidate sequence is considered to have ended after a certain
number (determined by scene representation statistics) of consecutive zero
vectors.

5.2 Event classification

The second phase of the framework (lines 37-47) focuses on recognizing whether
the detected activity corresponds to a workflow related event and classifying
it appropriately. This phase requires an offline training process based on the
model described in subsection 4.2, through which we train one separate HMM
for each of the events with appropriate ROI specific sequences to obtain the
λ parameters of each HMM (lines 1-5). The candidate sequence created from
the first phase can now be tested against all possible events pertaining to
the particular ROI that produced this sequence. More specifically, we calcu-
late the observation probability for the candidate sequence given each of the
ROI related HMMs. If more than one events are linked with the particular
ROI (which generally and most frequently is the case), then the event corre-
sponding to the maximum observation likelihood is recognized as the executed
subtask/event if it surpasses a certain threshold. In the case where only one
event (and therefore HMM) is linked with the particular ROI, the observa-
tion likelihood only needs to be greater than the related threshold so that the
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candidate sequence can be successfully recognized as the corresponding event.
The aforementioned thresholds are calculated from training process statistics.
This way, the detected activities can be classified as workflow related events
or rejected as irrelevant activity.

5.3 Workflow recognition and error correction following a top-down pathway

The series of recognized events as generated from the first and second phase
creates a sequence which has to be approved so that the execution of a
workflow can be regarded as accomplished. This is the objective of the third
phase of the framework (lines 49-58). As has been mentioned before and as
is usually the case in many industrial processes, the hierarchy of the occuring
events/”subtasks” is significant, however some permutations are allowed. In or-
der to automatically check whether the sequence of recognized events matches
one of the permitted permutations, and which one in particular among the
latter, we employ an approach that is based on the Levenshtein distance [15].

Levenshtein distance (or edit distance) is the minimal quantity of charac-
ter substitutions, deletions and insertions for transformation of a string s1 into
string s2. In particular we have modified the Wagner Fischer algorithm [23]
so as to accommodate the needs of our application domain. The Wagner Fis-
cher algorithm [23] employs dynamic programming methods to calculate the
Levenshtein Distance between any pair of strings. It uses an iterative process
to find successive distances between increasingly longer pairs of prefixes of the
two strings, computed with the aid of a matrix. In our case study, we regard
the events as characters, while the sequences of recognized events as well as
the allowed workflows as strings. The main modification introduced lies in the
definition of the cost weights of the insertions / deletions / substitutions. In
the standard version of the algorithm, the costs of all possible operations are
equal to 1. In our method, each cost depends on the likelihood of the corre-
sponding operation. For example, the substitution of an event e1 by an event
e2 carries a lower cost when the two events bear significant visual resemblance
and are thus difficult to distinguish, and a higher cost when they are totally
different and much harder to confuse; moreover, the cost of the insertion of
an event is high when the execution of another event is a prerequisite and the
latter does not precede the former in the observed sequence.

As soon as a workcycle ends, the sequence of recognized events is compared
against all possible legitimate workflow permutations. If there exists a work-
flow for which the calculated distance is zero, then we have a total match, and
the workflow as well as its recognition are successful. If, on the other hand,
there is no workflow permutation providing a total match, then the workflow
yielding the minimum edit distance is selected as the true target workflow.
Following the path that corresponds to the latter, the suggested event substi-
tutions, insertions, or deletions can be determined, thus providing information
about erroneous event classifications during the preceding steps of the recog-
nition process. Conclusions can also be drawn as regards activity detection
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in the respective ROIs therefore informing the interpretation of lower levels
of the framework, such as motion detection. This way, not only is workflow
recognition succesfully performed, but also a top down approach is provided,
thus offering substantial added value to the usual bottom up approach based
system.

6 Experiments and Results

We experimentally validated the proposed methods with video sequences ob-
tained from a real assembly line of a major automobile manufacturer. The
acquired datasets contain information pertaining to the production process
of a real vehicle manufacturing facility. The workflow on this assembly line
included tasks of picking several parts from racks and placing them on a des-
ignated cell some meters away where welding was performed. The information
acquired from the recognition process could be used for the extraction of pro-
duction statistics, anomaly detection and guarantee of safety and security.

6.1 Experimental setup

Adhering to the guidelines stated in Section 3 and taking into consideration
the nature of the industrial process observed, we have defined 12 events, which
are spatially confined in the six ROIs depicted in Figure 1. Each of these events
was regarded as a class of behavioral patterns that had to be recognized. The
events are briefly described as follows:

1. Worker picks part #1 from rack #1.
2. Worker places part #1 on the welding cell.
3. Two workers pick part #2a from rack #2.
4. Two workers place part #2a on the welding cell.
5. Two workers pick part #2b from rack #3.
6. Two workers place part #2b on the welding cell.
7. Worker picks up parts #3a and #3b from rack #4.
8. Worker places parts #3a and #3b on the welding cell.
9. Worker picks up part #4 from rack #1.

10. Worker places part #4 on the welding cell.
11. Worker(s) pick up part #5 from rack #5.
12. Worker(s) place part #5 on the welding cell.

The workspace configuration and the cameras’ positioning is given in Fig-
ure 2. For our experiments, we have used 20 sequences representing full as-
sembly cycles, each one containing each of the defined events. The length of
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Algorithm 1 Our method
1: {OFFLINE TRAINING}
2: {Supervised event learning through HMM}
3: for e = 1 to NumberOfEvents do
4: ≺ Qe,Ae,Be, πe � = TrainHMM(EventTimeSeries)
5: end for
6: {INITIALIZATIONS}
7: Set value for Thresholde from training statistics
8: Set value for EndDecision from scene representation statistics
9: for all r do

10: seqr=null;
11: candidateSeqr=null;
12: end for
13: ActivityHappening=FALSE;
14: {ONLINE RECOGNITION}
15: while (F=AcquireFrame()) 6= NULL do
16: for r = 1 to NumberOfROIs do
17: ort = ProcessFrame(F); {extraction of visual observations (features) by processing

the image that corresponds to ROI r of the current captured frame}
18: end for
19: if ActivityHappening = TRUE then
20: seqr = append(seqr, F )
21: if ort 6= 0 then
22: {non zero feature vector means that there is change in the image from the previous

frame; therefore can be a sign of activity in the ROI}
23: lastNonZero[seqr] = length(seqr)
24: else
25: {if zero feature vector}
26: if (length(seqr)− lastNonZero[seqr]) ≥ EndDecision then
27: {a certain number of zero vectors denotes ending of activity}
28: candidateSeqr = seqr(1..lastNonZero);

ActivityHappening =FALSE;
seqr=null;

29: end if
30: end if
31: else
32: {if ActivityHappening=FALSE}
33: if ort 6= 0 then
34: ActivityHappening =TRUE; seqr = append(seqr, F );
35: end if
36: end if
37: if candidateSeqr 6=NULL then
38: for every event ek pertaining to ROI r do
39: Calculate observation probability p(candidateSeqr|ek) of candidateSeqr given

the corresponding HMM
40: ê= argmaxk(p(candidateSeqr|ek))
41: if p(candidateSeqr)|ê > Thresholde then
42: Event Recognized;
43: w = append(w, ê);
44: end if
45: end for
46: end if
47: end while
48: {No more frames - workcycle completed}
49: for every possible workflow wj do
50: Calculate the Workflow Distance WD(w,wj);
51: end for
52: ŵ = argminj(WD(w,wj))
53: if WD(w, ŵ) = 0 then
54: {Total match; workflow w successfully recognized.}
55: else
56: {No total match was found; The closest valid workflow is ŵ;}
57: {Following the pathway of the calculation of WD(w, ŵ) the erroneous classifications

are determined. The lower levels are appropriately informed.}
58: end if
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Fig. 2 Depiction of a workcell along with the position of our camera (camera 2) and the
racks #1-5.

each sequence ranges from 2,000 frames to 3,5001. The annotation has been
done manually.

In each workflow all 12 events/subtasks are performed, in different orders
and often simultaneously. Challenges of the dataset include occlusions, visually
complex background, similar colours, variable subtask and task durations, high
intra-class and low inter-class variance. Moreover, the silhouettes get overlayed
in a random fashion, thus making the motion signatures much more difficult
to model. The core challenge, however, lies in the concurrent execution of
different subtasks in various parts of the scene.

6.2 Scene representation

To represent each video frame with r feature vectors, where r is the number
of ROIs in the image, we followed the method described in the subsection 4.1.
For capturing the spatiotemporal variations we have set the parameters at ς =
10 and τ = 70. We have chosen to use the Zernike moments up to sixth order
along with the center of gravity and the area, as feature vector for each one
of the r sub-images stemming from the r ROIs of each frame. The higher the
order of moments that we employ, the more detailed the region reconstruction
will be, but also the more processing power will be required.

Specifically we employed the complex moments A00, A11, A20, A22, A31,
A33, A40, A42, A44, A51, A53, A55, A60, A62, A64, A66 for each of which we
used the norm and the angle, except for A00,A20,A40,A60 for which the angle
was always constant. Additionally the center of gravity and the area were
used, making a total of 31 parameters, thus providing an acceptable scene
reconstruction without a computationally prohibitive dimension.

1 We are going to make the dataset publicly avail-
able. It is currently available for review purposes on
http://www.4shared.com/dir/sYeCqK5d/SignalProcessingVideoAnalytics.html
(folder:dataset2 - password:xyz543)
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For event recognition we used three-state HMMs with one mixture com-
ponent per state to model each of the events/subtasks described above, which
is a good trade-off between performance and efficiency. In all cases, we em-
ployed full covariance matrices for the adopted observation (mixture) models.
We trained all our models using the EM algorithm and we used the first ten
scenarios for training and the rest ten for testing.

6.3 Results

To begin with, it should be noted that the same dataset was used in [12] and
the results for task identification were not better than 60%, using multicamera
fusion. This highlights the difficulty of the task by using a holistic approach
without using ROIs.

On the contrary, the methodology described in this paper provided rather
promising results. The event detection and classification method led to sat-
isfactory recognition rates. The related confusion matrix showing the results
of the event detection and classification method before employing the error
correction / workflow recognition is depicted in Figure 3(a). The success rates
are lower in the cases where two events bear significant visual resemblance,
such as event 1 with event 9, and event 2 with event 10. The 13th ”event”
corresponds to void, that is a ”non-event”. We further extracted recall and
precision. Recall indicates the number of true positives divided by the total
number of positives in the ground truth (REC = TP/(TP + FN)). Precision
is the number of true positives divided by the number or true and false pos-
itives (PRC = TP/(TP + FP )). Average Recall in this case is 72.6 ± 12.2%
while average Precision is 83.4± 15.7%.

Following, we examine the effect of the error correction and workflow recog-
nition part of the framework, as described in subsection 5.3. Figure 3(b) shows
the confusion matrix after the modified Levenshtein distance based mechanism
has been employed in order to scrutinize the matching to a valid workflow.
The improvement in the success rates is significant, since Recall is increased
to 88.4± 7.6% and Precision up to 92.1± 7.1%.

Figure 6.3 displays the flow of an example scenario over a frame time-
line. Figure 4(b) displays the detections and classifications of events resulting
from the first and second part of the framework. As can be seen, the detec-
tor/classifier gives good results in general; it recognizes most events correctly
and more importantly, events 8 and 9, which happen simultaneously. However,
it produces some erroneous detections and classifications: first, an inexistent
occurrence of event 1 is made just before event 3, when in the ground truth
there is no event happening at that time (false positive); second, event 10 is
fallaciously classified as event 2 (which is not surprising given the visual re-
semblance of these two events). These two serious errors are rectified when
the third part of the framework is employed. By trying to match the observed
workflow to a valid sequence, the framework leads to the deletion of the false
positive event 1, and the substitution of the second occurrence of event 2 by
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(a) Event detection and classification

(b) Workflow recognition / error correction

Fig. 3 Confusion matrices

an occurrence of event 1. This way, the observed final result (Figure 4(c)) is
very close to the ground truth (Figure 4(a)). What’s more, these two major
rectifications (deletion of inexistent event 1 and substitution of erroneous event
2 by event 10) can inform the lower levels of the system (image based or ob-
ject detection and tracking modules, if those are employed in parallel) to help
them enhance their performance, thus contributing to the implementation of
a top-down pathway.
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7 Conclusion

In this work we have proposed a novel online framework for event driven
workflow recognition in industrial environments in real-time. In the context of
the framework we have handled the important problem of recognizing concur-
rent or overlapping events that may happen simultaneously on the same video
sequence. This is effected by observing different Regions of Interest and ex-
tracting separate feature vectors for each one of them; we then employ HMM
to model the events and following, a modified string matching technique based
on the Levenshtein distance is used to evaluate the validity of the extracted
recognized results and to correct erroneous event detections and classifica-
tions. The latter approach gives the opportunity to improve the performance
of lower levels (motion detection or object tracking) by informing them about
the errors committed during the event detection and classification processes,
thus contributing to the realization of a top down pathway, along with the
usual bottom up paradigm. The proposed methods have been applied with
promising results in some very challenging real sequences from an automobile
manufacturing process. The event detection and classification processes fol-
lowed by error correction and workflow matching/recognition result in a very
successful overall performance of the framework.
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(a) Ground truth

(b) Event detection and classification

(c) Workflow recognition / error correction

Fig. 4 Workflow related events of an example scenario on a timescale as they appear (a)
in ground truth, (b) after event detection and classification, (c) after workflow recognition
and error correction


