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A cross-domain recommender system using deep
coupled autoencoders
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Abstract—Long-standing data sparsity and cold-start consti-
tute thorny and perplexing problems for the recommendation
systems. Cross-domain recommendation as a domain adaptation
framework has been utilized to efficiently address these challeng-
ing issues, by exploiting information from multiple domains. In
this study, an item-level relevance cross-domain recommendation
task is explored, where two related domains, that is, the source
and the target domain contain common items without sharing
sensitive information regarding the users’ behavior, and thus
avoiding the leak of user privacy. In light of this scenario,
two novel coupled autoencoder-based deep learning methods are
proposed for cross-domain recommendation. The first method
aims to simultaneously learn a pair of autoencoders in order to
reveal the intrinsic representations of the items in the source and
target domains, along with a coupled mapping function to model
the non-linear relationships between these representations, thus
transferring beneficial information from the source to the target
domain. The second method is derived based on a new joint reg-
ularized optimization problem, which employs two autoencoders
to generate in a deep and non-linear manner the user and item-
latent factors, while at the same time a data-driven function is
learnt to map the item-latent factors across domains. Extensive
numerical experiments on two publicly available benchmark
datasets are conducted illustrating the superior performance of
our proposed methods compared to several state-of-the-art cross-
domain recommendation frameworks.

Index Terms—Cross-domain recommendation systems, coupled
autoencoders, latent factor models, deep learning.

I. INTRODUCTION

RECOMMENDER systems are automated applications
that suggest products to consumers based on their ob-

served interests [1]–[3]. A user’s preferences in items is
stored in the form of interaction, such as numerical rating,
within a rating matrix. As a result, users, items, and the
rating matrix form a domain [4]. The issues of cold start,
sparsity, inclusion of new customers or products, and so on
may compromise the performance of recommenders [5]–[7].
While these problems are being studied from a single domain
viewpoint, cross-domain recommender systems (CDRS) bring
a different perspective to their solution [8].

The challenge of recommending specific items to consumers
in a target domain (e.g., a resource-scarce market) by using
data from neighboring high-resource domains, e.g., using data
from a much larger market to boost recommendations in
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a target market, is central to the principle of cross-domain
recommendation [9]–[13]. We hypothesize that data from one
domain can be used to boost advice in a different domain. Such
an approach has attracted the interest of many researchers in
the recent years, e.g., [14]–[22].

The cross-domain recommendation problem (CDR) has
been explored under different perspectives and scenarios.
In general, CDR methods can be divided into three ma-
jor categories, that is content-based frameworks, embedding-
based frameworks and rating pattern-based approaches [16].
Content-based approaches examine the CDR problem from a
content-level relevance point of view. Particularly, this type
of methods aim to link various domains by capturing and
utilizing similar content information, such as, user-generated
reviews [19]. Contrary to these methodologies, embedding-
based approaches explore the CDR problem from a user-
relevance or item-relevance perspective. Exploiting common
users and/or common items, this category extracts embedding
knowledge (e.g., user/item latent factors) and then transfer it
across domains through domain adaptation techniques such
as neural networks [23], [24] and transfer learning [25]–
[27]. Finally, rating pattern-based approaches aim to transfer
information such as rating patterns from the source to the
target domain [28]–[30].

The proposed methods belong to the category of
embedding-based approaches. In more detail, we explore an
item-level relevance cross-domain recommendation task. We
assume two related domains, that is, the source and the target
domain, which contain common items without sharing any
additional information regarding the users’ behavior, and thus
avoiding the leak of user privacy. Our contribution concerns
two novel coupled autoencoder-based deep learning methods
for cross-domain recommendation:

• The first method, dubbed CACDR (Coupled Autoencoder
Cross - Domain Recommendation) aims to simultane-
ously learn a pair of autoencoders in order to reveal the
intrinsic representations of the items in the source and
target domains along with a coupled mapping function to
model the non-linear relationships between these repre-
sentations; thus it is able to transfer beneficial information
from the source to the target domain.

• The second method, dubbed LFACDR (Latent Factor
Autoencoder Cross-Domain Recommendation) is derived
based on a new joint regularized optimization problem,
which employs two autoencoders to generate in a deep
and non-linear manner the user and item-latent factors;
at the same time a data-driven function is learnt to map
the item-latent factors across domains.
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Different from other studies we optimize the autoencoders
jointly, thus learning in an end-to-end fashion the intrinsic
relationships across domains. Furthermore, we don’t use sce-
narios with shared users across domains requiring the transfer
of sensitive information regarding the user’s behavior, but
we consider the item-relevance scenario, which preserves the
user’s privacy since we share only the low dimensional item-
latent factors that have no information about the users.

The rest of the paper is organized as follows: section II
gives an overview of the research related to ours; section IV
analyzes the proposed methods; section V validates experi-
mentally the proposed methods using two public datasets as
source and target domains; finally, section VI summarizes our
contributions and gives future directions.

II. RELATED WORKS

In literature, there are plethora of studies attempting to
address the challenging recommendation issues that emerge,
that is, the data sparsity and the cold start by developing
CDR strategies. In recent years, the problem of CDR has been
tackled from multiple perspectives and different assumptions,
thus rendering this problem particularly difficult to describe
under a unique generic framework [15], [16]. To that end, in
this section several representative studies are briefly presented.

Specifically, Singh et al. [31] used a matrix factorization
approach to transfer information across domains by sharing
the user latent factor. Pan et al. [32] employed a principled
matrix-based transfer learning methodology to extract and
transfer knowledge concerning the users and items from the
source to the target domain. Agarwal, et al. [33] proposed
a collective matrix factorization method exploiting correlated
information across domains via localized factor models to
tackle the sparsity problem in the target domain. Moreno et
al. [18] exploited the information from multiple domains in
order to improve the recommendation accuracy for the target
domain. Lian et al. [34] combined collaborative filtering and
content-based filtering into a multi-view neural network to
tackle the CDR problem. Aiming to overcome the data sparsity
problem other studies such as [35], [36], [37], [38] employed
cluster-level matrix factorization techniques to share common
information between users and items across domains.

Recently, Man et al. [24] used a matrix factorization method
under the user sharing assumption to extract the latent factors
models and a multi-layer perceptron to model and transfer
valuable knowledge across domains. Kang et al. proposed
a semi-supervised mapping to recommend items for cold
start users by exploiting the distribution of shared users
across domains. Elkahky et al. [39] proposed a deep learning
methodology to map shared users and items to a hidden space
where the similarity between users and items is maximized.
Zhong et al. [17] utilized a deep learning architecture based
on the autoencoders and an attention mechanism to extract
and fuse information from multiple closely-related domains,
thus enhancing the rating prediction accuracy. Zhu et al. [40]
proposed a graphical and attentional framework for the CDR
problem based on the rating and content information across
domains. Additionally, Kanagawa et al. [41] employed an

unsupervised domain adaptation approach by reformulating
the recommendations as an extreme classification task. Zhao
et al. [42] captured the interactions of different domains as a
whole, and propagated user preferences, based on graph neural
networks. He et al. [22] proposed a codebook transfer learning
procedure to learn the proper codebook scale balancing both
the computational complexity and prediction accuracy for
CDR. Gao et al. [21] examined the CDR from a data privacy
perspective without sharing any information about the users’
data. Ma et al. [43] addressed the problem of insufficient
common users by employing a fully connected trust-aware
deep learning framework to discover the intrinsic relationships
between common and non-common users. Iwata et al. [14]
proposed a CDR architecture assuming that the user and
item-latent factor models in different domains derived from
a common Gaussian distribution. Hu et al. [44] used deep
cross connection networks to exploit and transfer information
across the domains. Li et al. [45] exploited the merits of the
dual transfer learning and the latent embedding methodology
to tackle the CDR problem. In more details, an orthogonal
matrix was employed to transfer the knowledge from the
source to target domain. Yuan et al. [30] utilized a deep
domain adaption model to extract and transfer patterns from
rating matrices in different domains, without considering any
auxiliary information. Contrast to above-mentioned methods,
other studies focused on extracting and utilizing content infor-
mation to tackle the CDR problem. Xin et al. [19] proposed a
CDR framework utilizing review text to alleviate data sparsity
limitations. Along the lines of the previous method, Fu et al.
[20] utilized stacked denoising autoencoders to fuse review
text with the rating matrices to tackle the data sparsity and
cold start problems in the target domain. Zhao et al. [46]
extracted multiple aspects of users and items based on review
documents aiming to learn aspect correlations across domains
via an attention mechanism.

Similar to our work, the study in [24] belongs to the
embedding-based frameworks considering also an item-level
relevance cross-domain recommendation task. However, this
approach employs matrix factorization frameworks to extract
the user and item-latent factors, thus rendering it limited only
to capture linear and rather shallow features from the complex
and non-linear collaborative relationships of the users and
items. Furthermore, taking into consideration that the CDR
problem is a domain adaptation procedure the learning of the
latent factors of the source and target domains independently
may result in poor performance, since there is no influence
or transferred knowledge between the domains during the
learning stage.

Different from the above-mentioned approach, in our study
the goal is to capture and model the underlying relationships
between the users and items from the source and target domain
in a deep and non-linear manner; we employ two novel cross-
domain recommendation frameworks based on the coupled
autoencoders. We optimize jointly the autoencoders of the
source and the target domain and this way we can trans-
fer valuable information across domains during the training
stage. Autoencoders have also been employed in other studies
addressing different cross-domain recommendation scenarios,
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such as multi-domain recommendation tasks [17], [45], [30]
and content-based recommendation tasks [19]. Nevertheless, in
these methods the autoencoders of the source and target do-
mains are trained independently. This procedure is piecemeal
and thus sub-optimal, since there is no transfer or coupled
learning the source domain and the target domain and hence
no influence from one to another during the training process.
Contrary to these learning procedures, in this study we argue
that better and more meaningful intrinsic representations can
be derived, not only based on the available input data in each
domain separately, but also taking into account the internal
relationships that exist across domains during the learning of
the autoencoders.

III. NOTATIONS AND PROBLEM FORMULATION

Table I summarizes all the required notations of this study.
In the under-examined CDR problem an item-level relevance
scenario is considered in which there are two domains contain-
ing the same items (e.g., movies) without necessarily sharing
the same users. In the literature the two domains are often
referred as the ’source’ and ’target’ domains. Without loss
of generality, let Rs ∈ Rm×n and Rt ∈ Rm×n be the
rating matrices representing the ratings between m items and
n users for the source and the target domain respectively,
where Rs(i, j) represents the rating of the user j for the
item i in the source domain and Rt(i, j) represents the corre-
sponding rating in the target domain. Furthermore, we denote
as M s = [ms

1;m
s
2, ...] = RS , M t = [mt

1;m
t
2, ...] = Rt

the item rating matrix of the source and target domain and
U s = [us

1;u
s
2, ...] = RsT , U t = [ut

1;u
t
2, ...] = RtT the user

rating matrix of the source and the target domain, respectively.
In general, the item rating vector ms

i ∈ R1×n describes the
rating relationship between the item i and all the users in the
source domain, whereas the user rating vectors us

i ∈ R1×m

describes the rating relationship between the user i and all
the items of the source domain. Accordingly, the item and
user rating vectors mt

i, u
t
i represent the corresponding rating

relations of the target domain.
Taking into consideration that both domains share the same

items, our primary goal is to exploit and extract knowledge
from the source domain and transfer it to the target domain;
this way it is possible to make recommendations for items
with no ratings or little information, thus tackling the data
sparsity and the cold-start problem in target domain. In more
detail, this scenario can be seen as a domain adaptation
procedure (transfer learning) [47], which aims to describe the
unknown mathematical relationships between the source and
target domains. Nonetheless, tackling this kind of problem two
major questions emerged and need to be answered: (i) what to
transfer - which information is beneficial to transfer across the
domains; and (ii) how to transfer - which learning procedure
could be employed to transfer the knowledge. To this end, we
address these crucial questions by developing two novel CDR
frameworks based on a coupled autoencoder approach.

IV. PROPOSED MODELS

In this section, we derive two coupled autoencoder frame-
works that can be used for the CDR problem. Specifically,

TABLE I
MATHEMATICAL NOTATIONS

Symbol Description

Source Domain
n The number of users of the source and target domain
m The number of items of the source and target domain
Rs ∈ Rm×n The rating matrix of the source domain
R̂s ∈ Rm×n The predicted rating matrix of the source domain
Us ∈ Rn×m The user rating matrix of the source domain
Ms ∈ Rm×n The item rating matrix of the source domain
Y s

e ∈ Rn×k The output of the encoder of Us

Xs
e ∈ Rm×k The output of the encoder of Ms

Ûs ∈ Rn×m The output of the decoder of Ye
s

M̂s ∈ Rm×n The output of the decoder of Xe
s

Target Domain
Rt ∈ Rm×n The rating matrix of the target domain
R̂t ∈ Rm×n The predicted rating matrix of the target domain
U t ∈ Rn×m The user rating matrix of the target domain
M t ∈ Rm×n The item rating matrix of the target domain
Y t

e ∈ Rn×k The output of the encoder of U t

Xt
e ∈ Rm×k The output of the encoder of M t

Û t ∈ Rn×m The output of the decoder of Ye
t

M̂ t ∈ Rm×n The output of the decoder of Xe
t

the first one, named CACDR employs a coupled autoencoder
method to capture and model the complex relationships be-
tween the users and items from the source and target domain,
while the second one, named LFACDR can be considered as
an expansion of the former one utilizing the autoencoders in
order to learn in a deep and non-linear manner the user and
item-latent factors models in the respective domains. After an
initial modeling of domain-specific information in the source,
both methods transfer that information to the target domain
via a multi-layer perceptron network. It should be highlighted
that only the item latent factors are transferred across domains,
without sharing any sensitive information regarding the user’s
behavior and violating privacy politics.

A. The CACDR Method

Autoencoders have demonstrated ground-breaking perfor-
mance in the unsupervised feature learning domain. Formally,
the autoencoder aims to reveal and describe the intrinsic
hidden representation of the input by copying its input to
its output [48]. However, the autoencoder as a single domain
procedure produces intrinsic representations based only on the
input data, thus ignoring the valuable underlying relationships
that exist across multiple domains. On the other hand, the
coupled autoencoder model is able to capture these internal
relationships and better representations can be derived as
the domains influence each other. In particular, the proposed
coupled autoencoder based method for CDR, called CACDR
consists of three stages. The first stage employs two autoen-
coders to reveal and learn the intrinsic hidden representations
of the item rating matrices, namely M s, M t of the source
and target domain, respectively. The second stage uses a multi-
layer Perceptron network (MLP) to model the relationship
across domains by learning a mapping function between the
intrinsic representations of the source and target domain. In
the previous two stages the autoencoders and the mapping
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(b) Coupled Learning.
Fig. 1. An illustration of our proposed CACDR model for cross-domain recommendation.(a) Initialization: First the autoencoders are trained to learn the
intrinsic representations of the source and target domain (stage 1) and then a mapping function (MLP) is learnt between these representations (stage 2).
(b) Coupled Learning: since the autoencoders are trained independently and there is no transfer learning across domains, a coupled autoencoder model is
employed in order to jointly optimize all the active parts of the autoencoders involved in the rating prediction in target domain (stage 3)..

function are trained independently. So we introduce coupling
at the third stage in order to to capture the underlying complex
relationships across domains and transfer beneficial knowledge
from one domain to another during the training procedure.
Finally, recommendations can be made for a new item in
the target domain based on the intrinsic representations of
the same item in the source domain. The complete proposed
methodology is depicted in Fig. 1.

1) Coupled Autoencoder-Based : Let M s, M t be the item
rating matrices of the source and target domains respectively.
Then the corresponding source and target autoencoders, which
learn the hidden intrinsic representations of the two item
matrices, can be obtained by minimizing the following recon-
struction errors:

∥∥∥M s − M̂ s
∥∥∥2
F

&
∥∥∥M t − M̂ t

∥∥∥2
F

(1)

where M̂ s, M̂ t denote the estimated item rating matrices of
the source and the target domain, respectively. Formally, the
autoencoder comprises of the encoding E(.) and decoding D(.)
process.

Xs
e = Es(M s)

or equivalently,

Xs
e,1 = ϕ(W s

e,1M
s + bse,1)

Xs
e,2 = ϕ(W s

e,2X
s
e,1 + bse,2) (2)

...

Xs
e = ϕ(W s

e,LX
s
e,L−1 + bse,L),

where W s
e,i, b

s
e,i (i = 1, . . . , L) denote the weight matrices

and the bias terms for the encoding layers of the source
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autoencoder, ϕ(.) is the activation function ReLU, L stands
for the number of hidden layers, Xs

e ∈ Rm×k is the output of
the source encoder Es(.) and k � n.

Similarly, the intrinsic representation of the target item
rating matrix M t ∈ Rm×n can be defined as

Xt
e = Et(M t)

or equivalently,
Xt

e,1 = ϕ(W t
e,1M

t + bte,1)

Xt
e,2 = ϕ(W t

e,2X
t
e,1 + bte,2) (3)

...

Xt
e = ϕ(W t

e,LX
t
e,L−1 + bte,L),

where W t
e,i, b

t
e,i (i = 1, . . . , L) denote the weight matrices

and the bias terms for the encoding layers of the target
autoencoder, ϕ(.) is the activation function ReLU, L stands
for the number of hidden layers, Xt

e ∈ Rm×k denotes the
output of the target encoder Et(.) and k � m.

Decoding process: Accordingly, the reconstructed item
rating matrices M̂ s, M̂ t can be derived by

M̂
s
= Ds(Xs

e) (4)

M̂
t
= Dt(Xt

e), (5)

where Ds(.) denotes the decoding procedure of the source
autoencoder and Ds(.) is the decoding procedure of the target
autoencoder. Note that both decoders consist also of L fully
connected layers.

To put in a nutshell, the encoding procedure aims to learn
a concrete representation of the input in order to capture the
complex relationships between the items and users. On the
other hand, the decoding process seeks to decode the hidden
representations back to the original item rating matrices. The
accurate decoding procedure enables the autoencoder to learn
the rating patterns between items and users and make rating
predictions for new items and users.

2) Non Linear Mapping: After obtaining the intrinsic rep-
resentations of the item rating matrices, an MLP is employed
to capture and model the underlying relationship between
the intrinsic representations of the source and target domain
(Xs

e, Xt
e), thus transferring the appropriate knowledge from

the source to target domain. Mathematically, the non linear
mapping function F(.) can be written as

X̂t
e = F(Xs

e)

or equivalently,
Xt

e,1 = ϕ(W p,1X
s
e + bp,1)

Xt
e,2 = ϕ(W p,2X

t
e,1 + bp,2) (6)

...

X̂t
e = ϕ(W p,LX

t
e,L−1 + bp,L)

where W p,i, bp,i (i = 1, . . . , L) denote the weight matrices
and the bias terms, ϕ(.) is the activation function ReLU, L
stands for the number of hidden layers and X̂t

e is the estimated
intrinsic representation of the target domain.

3) Cross-domain Rating Predictions: The goal of the pro-
posed framework is to recommend new items in the target
domain leveraging upon the knowledge of the same items
belonging in the source domain. In particular, given an item
j in the target domain, the following methodology is used to
recover its predicted rating:
1. The same item is found in the source domain and its intrin-

sic representation is obtained by employing the autoencoder
of the source domain (encoding procedure) according to
equation (2).

2. The corresponding intrinsic representation of the item in
the target domain can be estimated via the intrinsic repre-
sentation of the item in the source domain and the MLP
network based on relation (6).

3. Finally, the predicted rating of the item in the target
domain is recovered based on target autoencoder (decoding
procedure) according to relation (5).

4) Model Learning: The most critical part of the proposed
architecture is the optimization and coupling of the autoen-
coders along with the mapping function. However, by learning
the autoencoders first and then the mapping function (based
on the estimated intrinsic representations) may lead to poor
performance, since the autoencoders and the mapping function
are optimized independently. In other words, there is no
transfer or coupled learning between the source domain (i.e.,
source item rating matrix) and the target domain (i.e., target
item rating matrix). This procedure is piecemeal and thus sub-
optimal, since there is no influence from one to another during
the training process. Nevertheless, this methodology can be
used as initialization process of the model.

In light of the fact that the ultimate goal of the CACDR
method is to efficiently predict the item ratings of the target
domain (or the item rating matrix, M t = Rt), the proposed
objective function for optimizing jointly the two autoencoders
(source and target) along with the MLP network may be
written as:∥∥∥M t − M̂ t

∥∥∥2
F

(5)
==⇒

∥∥∥M t −Dt( ˆXe
t)
∥∥∥2
F

(6)
==⇒∥∥M t −Dt(F(Xs

e)
∥∥2
F

(2)
==⇒

∥∥M t −Dt(F(Es(Ms)
∥∥2
F
.

(7)

Note that now in relation (7) the source encoder Es(.), the
mapping neural network F(.) and the target decoder Dt(.) are
all explicitly involved in the reconstruction of the desired out-
put M̂ t. Hence, in order to couple the two autoencoders with
the mapping function a coupled deep network is employed,
where its first network component is the source encoder, the
second network component is the mapping neural network and
its final network component is the target decoder. Fig. 1b illus-
trates the proposed coupled architecture. Having obtained, the
stacked network architecture the back-propagation algorithm
is used to optimize (7). Algorithm 1 summarizes the proposed
methodology.

B. The LFACDR Method

As previously mentioned, the autoencoders constitute an
ideal mathematical tool to reveal and learn complex low di-
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(b) Coupled Learning.
Fig. 2. An illustration of the proposed LFACDR model for cross-domain recommendation.(a) Initialization: First, the autoencoders are trained to obtain the
item and user-latent factors of the source and target domain (stage 1) and then a mapping function (MLP) is learnt between the item latent factor matrices of
the source and target domain (stage 2). (b) Coupled Learning: A coupled autoencoder model is employed in order to jointly optimize all the active parts of
the autoencoders involved in the rating prediction in target domain (stage 3).

mensional representations while at the same time they preserve
the underlying structure of the input data. This consideration
motivates the ensuing cross domain recommendation method-
ology that a joint optimization problem is proposed in order
to recover in a deep and non-linear manner the user and item-
latent factors in both source and target domains. To this end,
for each domain two autoencoders are employed to jointly
learn the intrinsic representations of user and item rating
matrices and decompose the rating matrix into two low-rank
matrices, that is the user and item-latent factor matrix. The
proposed framework is shown in Fig. 2.

1) Latent Factor Modeling based on Autoencoders: Con-
sider the user rating matrix U s ∈ Rn×m, the item rating
matrix M s ∈ Rm×n and the rating matrix Rs ∈ Rn×m of the
source domain. To obtain the user and item-latent factors of
the source domain the following joint constrained optimization
problem is proposed, which includes one autoencoder for the
items and one autoencoder for the users. Hence, the proposed

problem is formulated as

Ls =
∥∥∥M s − M̂ s

∥∥∥2
F
+
∥∥∥U s − Û s

∥∥∥2
F
=∥∥M s −Ds

m(Xs
e)
∥∥2
F
+
∥∥U s −Ds

u(Y
s
e )

∥∥2
F

s.t. Xs
e Y

s
e

T = Rs, Xs
e = Esm(Ms), Y s

e = Esu(Us)
(8)

where Ds
m(.), Esm(.) denote the decoding and encoding pro-

cedure of the first source autoencoder (items), Xe
s ∈ Rm×k

is the item-latent factor matrix derived from the output of
the first encoder, Ds

u(.), Esu(.) stand for the decoding and
encoding procedure of the second source autoencoder (users)
and Y e

s ∈ Rn×k denotes the user-latent factor matrix derived
from the output of the second encoder. It should be highlighted
that the encoding and decoding processes of two autoencoders
can be written alternatively according to equations (2) and (4).

The two autoencoders aim to learn jointly the intrinsic rep-
resentations of the item and user rating matrices. At the same
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time, through the proposed constraint optimization problem
these intrinsic representations that is the Xs

e and Y s
e act as

the desired item and user-latent factor matrices, respectively.
Note that similar procedure can be employed to derive the
corresponding item and user-latent factor matrices Xt

e and
Y t

e of the target domain.
2) Non Linear Mapping: Having acquired the latent factor

matrices {Xe
s,Y

e
s,X

e
t ,Y

e
t} of items and users in the source

and target domain, similar to the previous proposed method,
an MLP is again used to learn the mapping function between
the item latent factor matrices of the source and target domain
(Xs

e, Xt
e). This can be expressed as follows,

X̂t
e = F(Xs

e)

or equivalently,

Xt
e,1 = ϕ(W p,1X

s
e + bp,1)

Xt
e,2 = ϕ(W p,2X

t
e,1 + bp,2) (9)

...

X̂t
e = ϕ(W p,LX

t
e,L−1 + bp,L)

where W p,i, bp,i (i = 1, . . . , L) denote the weight matrices
and the bias terms, ϕ(.) is the activation function ReLU, L
stands for the number of hidden layers and X̂t

e denotes the
estimated item latent factor matrix of the target domain.

3) Rating prediction: In general, given a new item in the
target domain with little information, we are not able to
calculate an accurate latent factor for making recommendation.
In light of this, the corresponding latent factor is learnt from
the source domain and a latent factor is derived for the same
item in the target domain via the mapping function (9). To be
more specific, the predicted rating between item i and user j
in the target domain is given by the following relation,

R̂s(i, j) = X̂e
t (i, :)Y

e
t (j, :)

T (10)

where X̂e
t (i, :) ∈ R1×k denote the estimated item-latent factor

of item i in the target domain based on the corresponding
item-latent factor of item i in the source domain via relation

Algorithm 1 : CACDR method
Require: The item rating matrices of the source and target

domain M s ∈ Rm×k, M t ∈ Rm×k

Ensure: The predicted rating matrix of the target domain
R̂t ∼ M̂ t

{Stage A: Initialization}
1: Initialize the source domain autoencoder by learning the

intrinsic representation Xs
e ∈ Rm×k of the matrix M s

via (2).
2: Initialize the target domain autoencoder by learning the

intrinsic representation Xt
e ∈ Rm×k of the matrix M t

via (3).
3: Initialize the MLP network by learning the mapping

function from Xs
e to Xt

e via (6).
{Stage B: Coupled Learning}

4: Construct the CACDR model via (7) and make recom-
mendation for items in the target domain.

(9) and Ŷ e
t (i, :) ∈ R1×k stands of the row vector of matrix

Ŷ e
t , representing the user-latent factor of user j in the target

domain.
4) Model Learning: Similar to the previous procedure the

training can be divided into two stages: the first stage is the
initialization and the second stage is the coupling.

Initialization: First, the autoencoders are trained to obtain
the item and user-latent factors of the source and target domain
and then the mapping function is learnt.

Coupling: Since the aim of the proposed method is to ac-
curately predict the ratings of new items in the target domain,
the objective function for jointly optimizing the autoencoders
extracting the item and user-latent factor matrices along with
the MLP network is given by∥∥∥Rt − R̂t

∥∥∥2
F
⇒

∥∥∥Rt − X̂t
e (Y

t
e)

T
∥∥∥2
F

(9)
==⇒∥∥Rt −F(Xs

e) (Y
t
e)

T
∥∥2
F

(11)

where
Xs

e = Esm(M s) & Y t
e = Etu(U t).

From relation (11) it is easy to verify that the source encoder
for the items Esm(.), the target decoder for the users Etu(.) and
MLP network are all explicitly involved in the reconstruction
of the desired output R̂t. Thus, the three network units can
be coupled together by jointly optimizing them through the
back propagation algorithm. Fig. 2b demonstrates the proposed
coupled framework. The overall methodology is summarized
in Algorithm 2.

V. EXPERIMENTAL VALIDATION

To validate the efficacy and applicability of the two pro-
posed methods, extensive experiments were conducted in the
context of the CDR problem. In particular, this study examines
an item-level relevance cross-domain recommendation sce-
nario, where two domains (source and target) share common
items (e.g., movies) and contain different users.

Algorithm 2 : LFACDR method
Require: The item rating matrices of the source and target

domain M s ∈ Rm×n, M t ∈ Rm×n and corresponding
user rating matrices U s ∈ Rn×m, U t ∈ Rn×m

Ensure: The predicted rating matrix of the target domain
R̂t ∼ M̂ t

{Stage A: Initialization}
1: Initialize the two source domain autoencoders by learning

the item-latent factor matrix Xs
e ∈ Rm×k and the user-

latent factor matrix Y s
e ∈ Rn×k via (8).

2: Initialize the two target domain autoencoders by learning
the item-latent factor matrix Xt

e ∈ Rm×k and the user-
latent factor matrix Y t

e ∈ Rn×k via (8).
3: Initialize the MLP network by learning the mapping

function from Xs
e to Xt

e via (9).
{Stage B: Coupled Learning}

4: Construct the LFACDR model via (11) and make recom-
mendation for items in the target domain.
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TABLE II
STATISTICS OF THE DATASETS

Datasets Domains #Movies #Users Density

No. 1 MovieLens 5986 48575 1.83%
Netflix 5986 49681 2.98%

No. 2 MovieLens 5819 40000 2.80%
Netflix 5819 40000 5.16%

No. 3 MovieLens 6000 30100 0.64%
Netflix 6000 30040 0.97%

No. 4 MovieLens 4200 44850 0.38%
Netflix 4200 43775 0.53%

A. Experimental Setup

Datasets: Two publicly available benchmark datasets were
employed to demonstrate the merits of the proposed rec-
ommendation frameworks. Namely, we used the MovieLens1

and Netflix2 datasets, which contain a large portion of same
movies, thereby forming an item-level relevance scenario. Ac-
cording to IMDB information more than 5500 movies are the
same across MovieLens and Netflix datasets. In light of this,
the MovieLens is taken as source domain and Netflix is used
as target domain, seeking to ameliorate the recommendation
performance in target domain by exploiting and transferring
valuable knowledge from the source domain. Moreover, due
to the size of the datasets we followed the same methodology
as in [21] by randomly sub-sampling a certain portion of users
along with their respective ratings, ensuring users had enough
number of interaction in each domain. Following this pre-
processing stage we ended up with four different datasets with
different sparsity levels. Table II provides the detailed statistics
of the four resulting datasets. Experimental Settings: In our
extensive experiments the two datasets were randomly divided
into the training set (80%) and the testing set (20%). Regarding
the testing set, we removed all the rating information from
the target domain (Netflix), thus considering these entities as
cold-start movies. Furthermore, taking into account that differ-
ent training and testing sets may affect the recommendation
performance, this splitting procedure was repeated 10 times
and the average results were reported. Finally, it should be
noted that we normalized the scale of ratings between 0 and
1 following the same strategy as in [45].

Parameter Settings: The parameters of our proposed meth-
ods are determined to be ideal via exploration of the parameter
space. Concretely, for the first method, referred as CACDR the
sizes of the autoencoders layers were set to {256, 128, 64, 64,
128, 256}, the sizes of the MLP layers are set to {64, 128} and
the batch size was 32. Regarding the training of the CACDR
method for the initialization stage the number of epochs is 250,
the learning rate was set to 10−3 and the l-2 regularizer term
was 10−5. Accordingly, for the coupling stage the number of
epochs was set to 300, the learning rate and regularization

1https://grouplens.org/datasets/movielens/
2https://www.kaggle.com/netflix-inc/netflix-prize-data

term was 10−5. To proceed further, for the second proposed
method, called LACDR the sizes of the autoencoders layers
were set to {512, 256, 128, 128, 256, 512}, the sizes of
the MLP layers were set to {128, 256} and the batch size
was 500. Furthermore, for the initialization training stage the
number of epochs was set to 250, while the learning rate
and the regularizer term were 10−3 and 10−5, respectively.
Additionally, for the coupling training stage the number of
epochs was set to 300 and the learning rate was 10−5, while
the regularizer term remained constant. Finally, the Adam
optimizer was employed to train the proposed models and the
ReLU was used as activation function.

Loss function and Evaluation metrics: Concerning the
loss function, in this study we employed the Masked Root
Mean Squared Error loss following the approach from [49],
since the zero values should be ignored during the training
stage of the proposed models. In addition, to evaluate the
recommendation performance we adopted the Root Mean
Squared Error (RMSE) and Mean Absolute Error (MAE)
metrics.

Compared methods: To showcase the added value of the
proposed methods (CACDR and LFACDR), we compared with
the following CDR frameworks:
� DDTCDR [45]: It is a recent state-of-the-art CDR model.

In more details, DDTCDR exploits the merits of the
dual transfer learning and the feature embedding method
to transfer knowledge across domains. Furthermore it
employs a orthogonal mapping to preserve user relations
in latent space.

� DARec [30]: Collaborative Cross Networks (CoNet) is
able to transfer valuable knowledge across domains by
employing deep cross connection networks.

� EMCDR [24]: This CDR framework utilizes a matrix
factorization methodology to learn the latent factors
and then a multi-layer perceptron is used to model
the mapping function between the latent factors of the
source and the target domain. This method provides four
frameworks and we chose the two best ones, namely the
MF EMCDR MLP employing MF (matrix factorization)
as its latent factor modeling and the BPR EMCDR MLP
employing BPR (bayesian personalized ranking) as its
latent factor modeling.

� CST [32]: It compacts the sparsity problem and enhances
the recommendation performance by transferring the la-
tent factors obtained from the source domain into the
target domain. The model employs matrix factorization
to deduce the user and item-latent factors in the source
domain, and transfer them into the target domain via a
regularization method.

� LFM [33]: It uses a collective matrix factorization
method exploiting correlated information across domains
via Localized factor models. Each user and item has a
global latent factor common across domains.

B. Performance Evaluation

Table III summarizes the average performance results in
terms of RMSE and MAE for the two examined datasets
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presented in Table II. It is evident that the proposed coupled
autoencoder-based frameworks, (i.e., CACDR and LFACDR)
gave better results than the other CDR methods. Moreover, it
is noteworthy that both proposed methods (and especially the
LFACDR method) were able to maintain low RMSE and MAE
values for different sparsity values of the datasets compared to
the other baseline models, where their performance degraded
for high levels of sparsity level. Although the DDTCDR and
DARec models exhibited good results, our models performed
even better and that can be attributed to the following reasons.
Firstly, EMCDR methods utilize matrix factorization tech-
niques to obtain the latent factor models, thus these methods
can only capture rather shallow and linear characteristics from
the datasets compared to our models that employ deep coupled
autoencoders allowing them to capture more complex and
non-linear features from the collaborative relationships of the
users and items. Secondly, although the DDTCDR and DaRec
models employ non-linear functions to extract the latent factors
(autoencoders) the learning of the latent factors of the source
and target domain along with the mapping function are learnt
separately, and hence the transferred knowledge between the
domains during the learning stage is rather limited. Different
from that, due to the coupled learning stage analyzing in
Sections IV-A4 and IV-B4, the autoencoders of the source
and the target domain were optimized jointly and the non-
linear relations across domains could be transferred much
more effectively during the training stage.

C. Impact of Coupled learning stage

To demonstrate the impact of the coupled learning on the
recommendation performance of the proposed methods, we
conduct some experiments with and without the coupled learn-
ing procedure during the training procedure of our methods.
According to Table IV, the coupled learning notably improves
the performance of the proposed methods, thus validating
our claims that the coupled autoencoders are able to capture
not only the existing relationships in each domain separately,
but more importantly to model the underlying relationships
between the source and target domains.

D. Impact of Latent Dimension

The latent dimension constitutes a crucial factor effecting
the efficacy of different cross-domain recommendation mod-
els, hence in this experiment the impact of latent dimension
(k) on the proposed models is investigated. In more details,
fixing the other parameters of our CDR methods, we examined
a broad range of latent dimensions (k), namely 8, 32, 64, 128,
256. Table V summarizes the results. The best results for the
CACDR and LFACDR occured when the latent dimension was
set to 64 and 128 respectively. It should be highlighted that
the LFACDR method exhibited better performance compared
to the CACDR method in all cases. This finding is mostly
attributed to the fact that the LFACDR method exploits not
only the information of the items but also the information
deriving from the users. Note that only the item latent factors
are transferred across domains, without sharing any sensitive
information regarding the user’s behavior and violating privacy

politics. Additionally, from table V we can deduce that the
performance of the proposed models was only slightly affected
by the change of the latent dimension, thus indicating their
robustness.

VI. CONCLUSIONS

We have explored an item-level relevance CDR task where
the source and the target domain contain common items
without sharing any additional information regarding the users’
behavior, and thus avoiding the leak of user privacy. We
proposed two novel coupled autoencoder-based deep learning
methods for CDR that are able to represent the items in the
source and target domains along with their coupled mapping
function to model the non-linear relationships between these
representations. The second method seeks to model the user
and item-latent factors, while the first one does not make
this assumption. Different from other studies that consider
scenarios with shared users across domains requiring the
transfer of sensitive information regarding the user’s behavior,
in our case the considered item-relevance scenario preserves
the users’ privacy; we share only the low dimensional item-
latent factors that have no information about the users.

We demonstrated some very promising results, in com-
parison to some popular methods on cross-domain recom-
mendation. We used portions of the MovieLens and Netflix
datasets with different sparsity levels and quantified the effect
on our results. We also demonstrated the effect of learning the
mapping function from one domain to the other, which turns
out to be a significant part of the proposed method.
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