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In this paper, we propose a method to enhance activity recognition in complex environments, where problems like occlusions, outliers

and illumination changes occur. In order to address the problems induced by the dependency on the camera’s viewpoint, multiple

cameras are used in an endeavour to exploit redundancies. We initially examine the effectiveness of various information stream fusion

approaches based on hidden Markov models, including Student’s t-endowed models for tolerance to outliers. Following, we introduce a

neural network based readjustment mechanism that fits these fusion schemes and aims at dynamically correcting erroneous classification

results for image sequences, thus improving the overall recognition rates. The proposed approaches are evaluated under complex real life

activity recognition scenarios and the acquired results are compared and discussed.

1 Introduction

The field of event recognition and human activity modelling has been the focal point of researchers from

various communities. The main reason that justifies this trend lies in the wide variety of applications linked

with event detection and behaviour recognition. In this paper, we focus on monitoring visually complex

environments, such as the production line of an automobile manufacturer. Computer vision and machine

learning algorithms attempting to effect activity recognition in complicated environments are confronted

with visibility problems, occlusions, outliers, and, in some cases, low intraclass and high interclass sim-

ilarity of the observed activity classes. Industrial environments pose additional difficulties ranging from

background clutter, frequent illumination changes, and welding flare to camera shaking and target defor-

mations. Figure 1 depicts typical key frames from the complex industrial environment of our use case,

highlighting the challenges posed. Typical object based methods cannot cope with the aforementioned

challenges. Testing a tracker and a popular person detector both led to failure in our industrial dataset.

In particular, the tracker was based on standard particle filtering and the employed features were the

color histogram and the edges of the blobs corresponding to the human figure (for details see our previous

work (Makris et al., 2011)); the experiments showed that the tracker was losing the target very often. We
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also tested the HOG person detector (Dalal and Triggs, 2005), which achieved a maximum accuracy of

56.42% in some of the least challenging sequences of our dataset. However, despite the visually complex

environment, the observed activities in the production line remain structured to a certain extent, thus

making it reasonable to expect that they can be modelled using machine learning methods.

In this context, the need arises to bypass the error-prone detection and tracking algorithms (Doulamis,

2010) by relying on appropriate holistic features for scene representation. Moreover, exploiting the wider

scene coverage provided by multiple viewpoints (which are often available in monitoring applications)

may conduce to occlusion solving; on the other hand, endowing time series classifiers with outlier tolerant

characteristics can increase robustness. Finally, exploiting an expert user’s feedback on a small part of the

video sequences through a relevance feedback inspired approach can minimise classification error.

Considering the above, our work contributes to the solution of activity recognition by proposing an

approach for further improving the supplied results after holistic scene representation, robust classification

based on outlier tolerant hidden Markov models (HMMs) and multicamera fusion; this method allows

interaction with the user, who may provide relevance feedback in part of the data. The proposed approach

is based on a neural network and early, as well as late fusion feedback schemes are investigated.

The remainder of this paper is structured as follows: Related work regarding activity recognition as well as

relevance feedback is discussed in Section 2. Section 3 focuses on robust multi-camera HMM based activity

modelling. In Section 4 we analyse the neural network based rectification mechanism, which readjusts

the classification probabilities provided by the HMM, and we introduce a novel ”fusion” approach. The

experimental validation is detailed in Section 5, while results are reported and discussed in Section 6.

Finally, Section 7 concludes the paper.

2 Related work

Event detection as well as human action and activity recognition have been the focus of interest of the

computer vision community for years. A variety of methods has addressed these problems, including

semilatent topic models (Wang and Mori, 2009), spatial-temporal context (Hu et al., 2010), optical flow

and kinematic features (Ali and Shah, 2010), and random trees and Hough transform voting (Yao et al.,

2010). Wada and Matsuyama (2000) employ a Non-deterministic Finite Automaton as a sequence analyzer

to present an approach for multiobject behaviour recognition based on behaviour driven selective attention.

Other works focus on more specific domains, e.g. event detection in sports (Hung and Hsieh, 2008),

retrieving actions in movies (Laptev and Perez, 2007), and automatic discovery of activities (Hamid et al.,
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2007). Models might be previously trained and kept fixed (Wang et al., 2008; Antonakaki et al., 2009) or

adapt over time (Breitenstein et al., 2009) to cope with changing conditions. A broad variety of image

feature extraction methods are used, such as global scene 3D motion (Padoy et al., 2009), object trajectories

(Johnson and Hogg, 1996) or other object based approaches (Fusier et al., 2007) which require accurate

detection and tracking. Other machine learning and statistical methods that have been used for activity

recognition include clustering (Boiman and Irani, 2005) and density estimation (Johnson and Hogg, 1996).

A very popular approach is hidden Markov models (HMMs) (e.g. (Ivanov and Bobick, 2000; Padoy et al.,

2009)), due to the fact that they can efficiently model stochastic time series at various time scales. An

alternative approach to the HMM for the analysis of complex dynamical systems is the Echo State Networks

(ESNs) (see, e.g., (Jaeger et al., 2007)). ESNs have been recently used for industrial activity recognition in

workflows using part of the same dataset that we are using (Veres et al., 2010). A limitation of ESNs is that

all significant variations of activity order in a given workflow have to be learnt to provide good classification

results. As will be shown in the experimental section through comparisons, our approach outperforms ESN

based methods. Other approaches for industrial activity recognition have also been proposed, involving

sensors and wearable computing, e.g. (Stiefmeier et al., 2008). A recent comprehensive literature review

regarding action and activity recognition can be found in (Poppe, 2010).

As far as multiple cameras are concerned, the work that investigates fusion of time series resulting from

holistic image representation is limited. Some typical approaches seek to solve the problem of position or

posture extraction in 3D or on ground coordinates, see, e.g., (Antonakaki et al., 2009; Lao, 2009). However,

camera calibration or homography estimation is required and in most cases there is still dependency on

tracking or on extraction of foreground objects and their position, which can be easily corrupted by

illumination changes and occlusions. Later in the paper, several fusion schemes using HMMs are discussed

and their applicability to our scenario is scrutinised.

The neural network based rectification framework has been inspired by relevance feedback. Relevance

feedback is a common approach for automatically adjusting the response of a system regarding information

taken from user’s interaction (Doulamis and Doulamis, 2006). Originally, it has been developed in tradi-

tional information retrieval systems (Rocchio, 1971), but it has been now extended to other applications,

such as surveillance systems (Oerlemans et al., 2007; Zhang et al., 2010). Relevance feedback is actually

an online learning strategy which reweights important parameters of a procedure in order to improve its

performance. Reweighting strategies can be linear or non-linear relying either on heuristic or optimised

methodologies. Linear and heuristic approaches usually adjust the degree of importance of several param-

eters that are involved in the selection process. On the contrary, non-linear methods adjust the applied
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method itself using function approximation strategies (Doulamis, 2005). In this direction, neural network

models have been introduced as non-linear function approximation systems (Doulamis et al., 2000). A

comprehensive review regarding algorithms of relevance feedback in image retrieval has been provided in

(Zhou and Huang, 2003). In this paper, the authors lay emphasis on comparing different techniques of

relevance feedback with respect to the type of training data, the adopted organisation strategies, the simi-

larity metrics used, the implemented learning strategies, and the effect of negative samples in the training

performance. However, such approaches have been applied mostly in information retrieval systems instead

of event recognition or surveillance applications. In information retrieval systems, a query object (image)

is compared against a set of stored objects (images), and the time dimension is not present, while activity

recognition is accomplished by taking into consideration the ”time variation” of the features of several

image frames.

3 Activity modelling via Hidden Markov Models and multicamera fusion

On the basis of the activity recognition framework lies the extraction of holistic visual features at the image

level, which are further used to associate events and activities with temporal patterns. The extracted

information is modelled by employing HMMs, which constitute a popular methodology for sequential

data modelling (Rabiner, 1989), while also offering the possibility to exploit redundancies stemming from

multiple streams through the utilisation of HMM-based information fusion schemes.

3.1 Visual observations

As is already mentioned, using holistic image based features we obviate the need for successful detection

and tracking, which are particularly difficult in complex environments. The features we used are calculated

as follows: Firstly we perform background subtraction. We use the foreground regions to represent the

multi-scale spatiotemporal changes at pixel level, using the Pixel Change History (PCH), which is defined

as (Xiang and Gong, 2006): Pς,τ (x, y, t) =

min(Pς,τ (x, y, t− 1) + 255
ς , 255) ifD(x, y, t) = 1

max(Pς,τ (x, y, t− 1)− 255
τ , 0) otherwise

, where

Pς,τ (x, y, t) is the PCH for a pixel at (x, y), D(x, y, t) is the binary image indicating the foreground region,

ς is an accumulation factor and τ is a decay factor. By setting appropriate values to ς and τ we are able

to capture pixel-level changes over time.

To represent the resulting PCH images we propose use of Zernike moments. The complex Zernike

moments of order p (see, e.g., (Mukundan and Ramakrishnan, 1998)) are defined as: Apq =
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and θ = tan−1(y/x), −1 < x, y < 1, and p− q = even, 0 ≤ q ≤ p.

3.2 Using HMMs for activity modelling

An HMM entails a Markov chain comprising a number of N states, with each state being coupled with an

observation emission distribution. An HMM defines a set of initial probabilities {πk}Nk=1 for each state, and

a matrix A of transition probabilities between states; each state is associated with a number of observations

o (input vectors). Gaussian mixture models are typically used for modelling the observation emission

densities of the hidden states. Typically, HMMs are trained under the maximum-likelihood framework, by

means of the EM algorithm (Rabiner, 1989). The HMM model size, i.e. the number of constituent states

and mixture components, can affect model performance and efficiency; for this reason, several criteria have

been proposed for the purpose of data-driven HMM model selection, e.g. (Ostendorf and Singer, 1997).

However, for systems that are expected to operate in nearly real-time, small models are generally preferable,

due to their low number of parameters, hence easier learning, and considerably less computational burden

for sequential data classification.

Outliers are expected to appear in model training and test datasets obtained from realistic monitoring

applications due to illumination changes, unexpected occlusions, unexpected task variations etc, and may

seriously corrupt training results. For this we propose the integration of the Student’s t-distribution in our

models. The probability density function (pdf) of Student’s t-distribution with mean vector µ, positive

definite inner product matrix Σ, and ν degrees of freedom is given by: t (xt;µ,Σ, ν) =
Γ( ν+p2 )|Σ|−

1
2 (πν)−

p
2

Γ( ν2 ){1+d(xt,µ;Σ)/ν}
ν+p
2

where Γ(.) denotes the gamma function and d the Mahalanobis distance.

Modifying ν enables including outliers in the pdf without corrupting the model. This additional degree of

freedom can model heavier tails, which is not possible for the Gaussian, which is a special case of Student’s

t for ν → ∞. A detailed presentation on how to learn ν as well as experimental argumentation for the

robustness of Student’s t-distribution based HMM can be found in (Chatzis et al., 2009).

3.3 Exploiting redundancies via multicamera fusion

In the cases of complex environments, which are examined in this paper, the vulnerability to occlusions is

significant, thus highlighting the dependency on the camera viewpoint. Deploying multiple cameras with

partly overlapping views and exploiting the redundancies can help solve occlusions and increase robustness.

Each camera input provides a different stream of observations. These streams can be combined by means of
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information fusion techniques, to exploit the complementarity of the different views. Here we will examine

the most popular HMM fusion approaches, analyse their characteristics and applicability (which will be

experimentally verified in subsection 6.1) and propose certain adaptations to increase tolerance to outliers.

In the state-synchronous HMM (Dupont and Luettin, 2000) (Figure 2(a)) the streams are assumed

to be synchronised. Each stream is modelled using an individual HMM; the postulated streamwise

HMMs share the same state dynamics (identical states, state priors, transition matrices, component

priors). Then, the likelihood for one observation is given by the product of the observation likeli-

hood of each stream c raised to an appropriate positive stream weight rc (Dupont and Luettin, 2000):

P (ot|st = i) =
C∏
c=1

[
K∑
k=1

wikcP (oct|θikc)]rc , where wikc denotes the weights of the mixtures and θikc the

parameters of the kth component density of the ith state of the cth stream. The weight rc is associated

with the reliability of the information carried by the cth stream.

Nevertheless, the assumption of synchronised data can be rather confining when attempting activity

recognition in real-world applications. The parallel HMM (Vogler and Metaxas, 1999) (Figure 2(b)) is an

alternative that assumes that the streams are independent of each other. A separate HMM for each stream

can be therefore trained in the typical way. The parallel HMM can be applied to cameras or other sensors

that may not necessarily be synchronised and may operate at different acquisition rates. Similar to the

synchronous case, each stream c may have its own weight rc depending on the reliability of the source.

Classification is performed by selecting the class that maximises the weighted sum of the classification

probabilities from the streamwise HMMs, i.e. class assignment is conducted by picking the class l̂ with

l̂ = argmax
l

([
C∑
c=1

rclogP (o1...oT |λcl)]), where λcl are the parameters of the postulated streamwise HMM of

the cth stream that corresponds to the lth class. As can be inferred by the described architecture a major

drawback that plagues the parallel HMM lies in its tendency to neglect any dependencies on the state

level between the observation streams.

To this end several architectures attempting to address this issue have been proposed in the literature,

such as the coupled HMM (Nefian et al., 2002; Brand et al., 1997) and the multistreamed fused HMM (Zeng

et al., 2008). Brand et al. (1997) couple the current state of one stream with the previous of the other

(assuming two streams), while Zeng et al. (2008) couple the current state of one stream to the current of the

other, which is a stronger and more intuitive condition and unlike (Brand et al., 1997) does not necessitate

approximations which inevitably sacrifice some crucial information. Focusing on multistream fused HMM

(Figure 2(c)), the connections between the component stream-wise HMMs of this model are chosen based on

a probabilistic fusion model, which is optimal according to the maximum entropy principle and a maximum

mutual information criterion for selecting dimension-reduction transforms. Specifically, if we consider a set
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of multistream observations O = {ot}Tt=1 with ot = {oct}Cc=1 and oc = {oct}Tt=1, the multistream fused

HMM models this data based on the fundamental assumption: P (O) = 1
C

C∑
c=1

P (oc)
∏
r 6=c

P (or|ŝc), where

ŝc is the estimated hidden sequence of emitting states that corresponds to the cth stream observations,

obtained by means of the Viterbi algorithm, P (oc) is the observation probability of the cth stream-observed

sequence, and P (or|ŝc) is the coupling density of the observations from the rth stream with respect to the

states of the cth stream model: P (or|ŝc) =
T∏
t=1

P (ort|ŝct). The probabilities P (ort|ŝct) of the multistream

fused HMM can be modelled by means of mixtures of Gaussian densities, similar to the stateconditional

likelihoods of the streamwise HMMs. However, in this paper, we propose the following adaptation in an

endeavour to attain higher tolerance to outliers: the use of Student’s t mixture models instead of Gaussian

mixtures can be applied to both the probability models of the streamwise HMM states and the interstream

coupling models of the multistream fused HMM to further enhance robustness. Synchronous HMM and

parallel HMM will also be adapted by using the Student’s t pdf for the streamwise models.

Similar to the case of parallel HMMs, the class that maximises the weighted sum of the log-likelihoods

over the streamwise models is the winner. Experimental verification of the suitability of the described fusion

schemes for activity recognition, as well as related comparisons and discussion follow in subsection 6.1.

4 A rectification scheme based on a feedforward neural network

In this section we propose a rectification scheme that exploits the expert user’s feedback on the classification

provided by the HMM framework in part of the footage, so as to enhance future classification results.

Let us denote as S a set that contains the selected samples by the expert user. The set

S ={· · · (pi,di) · · · } contains pairs of the form (pi,di), where as pi we indicate the observation prob-

ability vector, generated by the HMM, the elements of which express the probability of the corresponding

frame to belong to one of the, say, M available classes. Vector di indicates the ideal probabilities for the

ith sample. Variable di is an indicator vector meaning that all its elements will be zero apart from one

which is equal to one. This element indicates the class that this task belongs to. Assuming the existence of

a non-linear function able to correct the erroneous classifications of the HMM, we can derive: di = f(pi)

where f(·) is an unknown vector function indicating the non-linear relationship between pi and di. The

non-linear relationship dynamically changes under different conditions and camera system modification.

To address the aforementioned difficulties, we introduce a feedforward neural network model that is able

to accurately approximate the unknown vector function f(·) with a certain degree of accuracy. In this

case, the previous equation is now written as: di = f
w

(pi). The difference between the two equations is
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the introduction of the vector weight w. This means that different parameters (weights) of the network

yield different performance of the adaptable classifier. Vector w includes all the parameters (weights) of

the non-linear neural network-based classifier.

To estimate the weights w we need to apply a training algorithm that actually minimises the mean square

error among all data (task sequences) selected from the expert user and the respective output of the network

when a particular set of weights is applied. That is, w = arg minforallw ε = arg minforallw
∑
i

(f
w

(pi)−di)
2.

The backpropagation algorithm can provide a solution to this non-linear minimisation problem. In our

experiments, we select a small neural network structure of few hidden neurons and one hidden layer. In

this case, we try to minimise the number of neural networks parameters, i.e., the size of weight vector w.

It is clear that the samples of the training set S should be greater than the number of neural network

parameters, that is the dimension of the weight vector w. Nevertheless, since the size of the neural network

is small, few training samples are required. The readjusted probabilities extracted as output of the neural

network testing process are used as a basis for enhanced activity recognition by means of selecting the

activity yielding the maximum probability in each case. The approach described here is graphically depicted

by the green arrow path in Figure 3, which gives a schematic overview of the proposed framework. Here,

the neural network rectifies the ”combined” probabilities extracted from the fused HMM. In the following

subsection we introduce a novel approach for integrating the neural network based rectification mechanism

into the fusion model.

4.1 Integrating neural network based rectification into the fusion model

In addition to utilising the readjusted likelihoods provided by the neural network as the basis from which

to select the winner class for every activity, we hereby propose an adaptation to the aforementioned

parallel HMM fusion scheme, that incorporates the rectified probabilities. This approach corresponds to

the red arrow path in Figure 3, where the neural network rectifies the streamwise probabilities, which are

subsequently fused.

We assume that the probabilities extracted by the individual streamwise HMM frameworks are fed

into the rectification mechanism. As a consequence, readjusted probabilities corresponding to the two

streamwise models are generated. Let PNN (o1...oT |λcl, nc)]) be the readjusted probability generated as

output from the neural network, where λcl are the parameters of the postulated streamwise HMM of

the cth stream that corresponds to the lth class and nc are the parameters of the neural network that

corresponds to the cth stream. In this proposed rectification driven fused HMM (RDFHMM) fusion model
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class assignment is conducted by picking the class l̂ with:

l̂ = argmax
l

([

C∑
c=1

rcllogPNN (o1...oT |λcl, nc)]) (1)

where rcl is the stream weight factor for the cth stream and the lth class; the stream weight can therefore

vary according to the reliability of a stream not only in general terms but also in a class-specific manner,

since different camera positions may offer better or worse viewpoints for particular activity classes. It

should be noted here that it would be possible to include the weight factor rcl in the neural network

rectification, i.e., have a ”unified” rectification scheme where a neural network would take as input the

probabilities of all streamwise HMMs and produce an overall probability vector as output. However, this

would raise the complexity of the network, thus requiring a greater number of training samples. We opt

for the separate streamwise rectification schemes in the context of RDFHMM, because they involve easier

training, fewer training samples required, and lower generalisation error. The contribution of the proposed

non-linear probability readjustment scheme in the improvement of the recognition results is experimentally

validated and discussed in subsection 6.2.

5 Experimental validation

We experimentally validated the proposed methods with video sequences obtained from a real assembly

line of an automobile manufacturer. The workflow on this line included picking several parts from racks

and placing them on a designated welding cell. Each of the above activities/tasks was regarded as a class of

behavioural patterns that had to be recognised. Two cameras with partially overlapping views were used.

We evaluated the overall efficiency of the proposed system, as well as the framework’s different alternative

constituent components.

Experimental setup. The workspace configuration and the cameras’ positioning are depicted in Figure 4.

According to the manufacturing requirements each workflow consists of the following seven activities/tasks,

which are not necessarily executed sequentially:

Task 1: A part from Rack 1 (upper) is placed on the welding spot by worker(s).

Task 2: A part from Rack 2 is placed on the welding spot by worker(s).

Task 3: A part from Rack 3 is placed on the welding spot by worker(s).

Task 4: Two parts from Rack 4 are placed on the welding spot by worker(s).
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Task 5: A part from Rack 1 (lower) is placed on the welding spot by worker(s).

Task 6: A part from Rack 5 is placed on the welding spot by worker(s).

Task 7: Worker(s) grab(s) the welding tools and weld the parts together.

Two datasets1 (Voulodimos et al., 2011) were used for the experiments. Each dataset contains 20 seg-

mented sequences representing full assembly cycles/workflows. In each workflow all seven activities are

performed, but not necessarily in the same order. The total number of frames was approximately 80,000

per camera for each dataset. Challenges of the two datasets include occlusions, visually complex back-

ground, similar colours, high intra-class and low inter-class variance. In dataset-1, the assembly process

was rather well structured and was performed strictly by two people. Noisy objects were present (other

persons or vehicles) but not particularly often. In dataset-2 the assembly process was modified, in that

a third person was present quite often in the scene, performing tasks in parallel to the tasks executed

by the other two workers. Dataset-2 is therefore far more challenging because the workers’ body silhou-

ettes got overlayed in a random fashion, thus making the motion signatures, i.e., the trajectories of their

movement, much more difficult to model. Moreover, variable task durations and overlapping phenomena

were far more exacerbated in comparison to dataset-1. The annotation of the datasets was done man-

ually. Synchronisation of the employed IP-cameras was approximate by exploiting the server-generated

timestamps.

Holistic scene representation. We have used the Zernike moments up to sixth order (excluding four

angles that were always constant), along with the center of gravity and the area, thus having a good

scene reconstruction without too high dimension (31). This choice provided a good trade-off between

representation quality and real-time performance requirements (higher order moments would require much

more computational resources). Limiting the order of moments used was also justified by the fact that the

details captured by higher order moments have much higher variability and are more sensitive to noise.

For capturing the spatiotemporal variations we have set the parameters at ς = 10 and τ = 70, which

were defined by the duration of motion that we wanted to capture, and are application specific. Zernike

moments have been calculated in rectangular regions of interest of approximately 15,000 pixels in each

image, to limit the processing and allow real time feature extraction. The processing was performed at

approximately 50-60 fps.

1The datasets are publicly available on http://www.scovis.eu.
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Fused HMM based classification. The models were trained using the EM algorithm. We used the typical

HMM model for the individual streams as well as state-synchronous, parallel and multistream fused HMMs.

We have experimented with the Gaussian and the Student’s t-distribution. All experimental variations were

performed on both dataset-1 and dataset-2, thus making a total of 20 different experimental setups. We used

three-state HMMs with a single mixture component per state to model each of the seven tasks described

above, which is a good trade-off between performance and efficiency. For the mixture model representing

the interstream interactions in the context of the multistream fused HMM we used mixture models of two

component distributions. Full covariance matrices were employed for the observation models. The stream

weights rc in the fusion models, as well as the weights rcl in the case of RDFHMM, were selected according

to the reliability of the individual streams, that is in proportion to the classification accuracy attained by

the respective single stream HMM. For each dataset, ten workcycles were used for training of the HMMs

and the other ten were used for testing.

Neural network based rectification. In this phase an expert user selected a set of training samples. These

samples were represented using the respective probability vector, as extracted by the HMM framework,

and the targeted correct classification of this task. Following, a feedforward neural network model was

trained so as to adjust the probabilities extracted by the HMM framework to minimise the erroneous

classifications. The structure of the feedfoward neural network was selected to be small. In particular, we

selected a feedforward neural network with one hidden layer and 15 neurons in this layer. It had 7 input

nodes and 7 output nodes (as many as the number of activities). The transfer function was the sigmoid.

In these experiments of the second phase, the samples belonging to three workcycles were selected to form

the training set, and the remaining were used for testing.

6 Results

We evaluated the overall efficiency of the proposed system, as well as the framework’s different alternative

constituent components. For a quantitative evaluation, we used recall-precision metrics. Recall corresponds

to the number of true positives divided by the total number of positives in the ground truth, whereas

precision equals the number of true positives divided by number of true and false positives. The F-measure

is the harmonic mean of these two measurements. The measurements presented were averaged across all

test sequences per experimental setup.
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6.1 HMM based recognition

Table 1 shows the obtained results from the HMM based approaches for dataset-1 and dataset-2.

Dataset-1 vs dataset-2. As a first observation, the employed holistic features and HMM based frameworks

represented rather well the assembly process. The classification rates attained in dataset-1 were very high,

considering the complexity of the environment. The representation capability of PCH based features proved

very satisfactory for dataset-1. As expected, success rates in dataset-2 were lower, which can be explained

by the far more relaxed structure in the activities performed, the randomly overlayed silhouettes and

all the special challenges described above. However, these results were still rather satisfactory for such a

difficult dataset, and constituted a good base for the rectification mechanism to follow.

Single stream vs fusion approaches. The results indicated that the individual HMM corresponding to

camera 2 (HMM2) tended to yield better recognition rates than HMM1, which can be explained by the

generally better viewpoint of the former. The confusion matrices in Figure 5 display the impact of the

complementarity of the views on the results as well as the successful exploitation of this fact in the case of

multistream fused HMM. For example, camera 2 offered a more favourable viewpoint for discerning task

1 from task 5, whereas camera 1 provided a better angle for recognising task 4.

A careful evaluation of the results shown in Table 1 leads to the conclusion that information fusion pro-

vides significant added value when implemented in the form of multistream fused HMM. In all experimental

setups, the multistream fused approach outperformed the better of two individual streamwise models in

terms of recall and precision by up to 6.2%. This improvement can be put down to the multistream fused

model’s capability of capturing the state interdependencies, without assuming strict synchronicity. The

parallel HMM approach provided slightly inferior or slightly superior success rates (depending on the ex-

perimental setup) in comparison to the best individual streamwise model. This approach considers the

streams to be totally asynchronous and is thus unable to make use of state interdependencies. On the

other hand, recall and precision rates deteriorated when assuming perfect synchronicity by employing the

state-synchronous approach, reflecting the fact that our cameras were indeed not perfectly synchronised.

Gaussian vs Student’s t. Using Student’s t-distribution instead of the conventional Gaussian as predictive

function of the HMMs additionally increased recognition rates to a certain extent (ranging from 1.4% up to

11.4%). The contribution was more apparent in the experimets of dataset-2 (Table 1), where the amount

of noise was greater, thus proving the usefulness of Student’s t-distribution in enhancing the robustness to

outliers in activity recognition from video streams.
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6.2 Neural network based rectification results

Table 2 contains the results acquired after employing the rectification mechanism. Comparing the measures

in Table 2 with the respective results of Table 1, we notice that the proposed rectification scheme provides

a substanstial improvement. Recall, precision, and F-measure were all significantly increased compared to

the respective experimental setups when no neural network based readjustment was performed. As ex-

pected, multistream fused HMM supplemented with the rectification mechanism provided the best results

among the approaches that rectify the fused results, since it was also the best performing approach when

stand-alone. However, we observe that our proposed RDFHMM, which first readjusts the streamwise prob-

abilities before feeding them into the adapted fusion model, yielded the best results, slightly outperforming

MFHMM+RM, with recall rates of up to 95% and 79.8% for datasets 1 and 2 respectively.

Comparing our results with those of (Veres et al., 2010) (the results presented therein concern camera 1

from dataset-1) we observe that the streamwise HMM1 (Student’s t) method outperforms the ESN based

approach both in terms of recall and precision. The difference in performance increases when considering

multistream fusion or rectification. We also experimented with ESN using the features described here, so

as to compare the performance of our methods in both datasets. To this end, we used a network of 500

nodes, which was efficient for real time execution and avoided overfitting. It had seven output nodes, each

one corresponding to a predicted task. The median of the last 101 estimations was taken to ensure lower

jitter in the output. We have used the Matlab toolbox provided by (Jaeger et al., 2007) after parameters’

optimisation using trial and error. The F-measures were 80.3% and 82.6% (camera 1 and 2) for dataset-1,

and 60.5% and 57.3% (camera 1 and 2) for dataset-2, i.e., comparable to the respective single stream

HMM. However, employing the existing HMM based fusion schemes as well as exploiting user feedback

through rectification (even better through RDFHMM) can lead to significant improvement of performance.

Figures 6(a) and 6(b) display the % classification error for all experimental setups with and without

the rectification mechanism for datasets 1 and 2 respectively. The improvement ratio (in terms of % error

decrease) in relation to the sole use of the HMM based approaches is depicted in Figures 7(a) and 7(b).

Clearly, rectification significantly enhanced the performance of the proposed framework, especially when

implemented in the form of the proposed RDFHMM.

7 Conclusion

In this work, we have presented a framework for activity recognition in complex environments, such as

the production line of an industrial plant, which although visually complicated, remains a structured
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process. The extraction of holistic features to bypass tracking, the employment of Student’s t-distribution

and multicamera fusion can address the challenges involved. However, all these together may be further

improved by a rectification mechanism. Inspired by relevance feedback, this mechanism is based on a

non-linear classification scheme that aims to re-adjust the probabilities of the stochastic models (such

as the hidden Markov model and its fused versions) according to a set of data selected by an expert

user through an interactive framework. The non-linear rectification is accomplished using a feedforward

neural network model that takes as input the classification probabilities of the stochastic models and

generates as output the adjusted probabilities. We differentiate between two approaches. In the first, the

rectification mechanism readjusts the probabilites stemming from the fused stochastic model and produces

the final activity recognition decision; in the second, the rectification mechanism readjusts the streamwise

probabilities and feeds its output to the proposed Rectification Driven Fused HMM (RDFHMM), which

fuses the readjusted probabilites and extracts the recognised activity.

We have tested the proposed methodology in very challenging datasets from a real production line of an

automobile industry. The results illustrate significant improvement when applying the rectification mecha-

nism, while the proposed RDFHMM yields the best recognition rates. Regarding the practical implications

of our results, the demonstrated experiment concerns real industrial workflows without any sort of envi-

ronment engineering. So far no assumptions have been made about occlusions, illumination changes, or

workers motion, etc, so the setting is very challenging. The recognition rate is not expected to be perfect

using the proposed method under such conditions. For accuracy that approximates 100% we would need to

apply some additional constraints in the monitored scene, e.g., controlled illumination, enforced paths to

workers, controlled timing for tasks, etc. The application of such constraints is not unusual in production

environments and if they are adopted it would be realistic to expect nearly perfect performance, because

the repeatability of the tasks would be much higher.

As future research, we plan to exploit adaptive neural network models in order to recursively readjust the

classification probabilities during the activity execution and to investigate dynamic methods for readjusting

the learning process of the involved stochastic models.
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Figure 1. Sequences from our industrial environment dataset. Object tracking as well as activity recognition is extremely challenging
due to occlusions, low resolution, and high intraclass and low interclass variance. The first two rows depict two different activities that
are executed during the production cycle: their resemblance is so high, that they would be difficult to distinguish even for the human

eye; the third row shows some example frames of occlusions, outliers, sparks, abnormalities, etc.

(a) State-synchronous HMM (b) Parallel HMM (c) Multistream fused HMM

Figure 2. HMM based fusion approaches for two streams. Symbols s and o stand for states and observations respectively. The first
index indicates the stream and the second the time.

Figure 3. Schematic overview: The neural network based rectification mechanism is examined under two different approaches
(corresponding to the green and red paths respectively). The green approach rectifies the fused result produced by the fused HMM,

while the red one performs streamwise rectification and in the sequel the rectified streams are fused (RDFHMM).
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Figure 4. Depiction of workcell along with the position of the cameras and racks #1-5.

(a) Camera 1 HMM (b) Camera 2 HMM (c) Mulistream fused HMM

Figure 5. Confusion matrices from dataset-1 for a) individual HMM for camera 1, b) individual HMM for camera 2 and c) mulistream
fused HMM, using Student’s t-distribution.

(a) Dataset-1 (b) Dataset-2

Figure 6. Classification error % with and without the rectification mechanism for all experimental setups: 1.HMM1-Gauss,
2.HMM1-Student-t, 3.HMM2-Gauss, 4.HMM2-Student-t, 5.SYNC-Gauss, 6.SYNC-Student-t, 7.PARAL-Gauss, 8.PARAL-Student-t,
9.MULTI-Gauss, 10.MULTI-Student-t, 11.RDFHMM-Gauss, 12.RDFHMM-Student-t (11 & 12 have no corresponding non-rectified

setup).
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(a) Dataset-1 (b) Dataset-2

Figure 7. Improvement ratio % in terms of error decrease for all experimental setups: 1.HMM1-Gauss, 2.HMM1-Student-t,
3.HMM2-Gauss, 4.HMM2-Student-t, 5.SYNC-Gauss, 6.SYNC-Student-t, 7.PARAL-Gauss, 8.PARAL-Student-t, 9.MULTI-Gauss,
10.MULTI-Student-t, (above mentioned 11 & 12 have no corresponding non-rectified setup therefore no improvement ratio can be

calculated).

Table 1. Results obtained from dataset-1 and dataset-2 using i) individual HMMs to model information from Stream 1 (HMM1); ii) individual

HMMs to model information from Stream 2 (HMM2); iii) state-synchronous HMMs (SYNC); iv) parallel HMMs (PARAL); and v) multistream

fused HMMs (MULTI) with a) Gaussian and b) Student’s t-distribution as observation likelihood.

dataset-1 dataset-2
Recall Precision F-measure Recall Precision F-measure

HMM1
Gauss 82.4% 78.1% 80.2% 51.8% 49.8% 50.8%

Student-t 85.0% 80.2% 82.5% 63.2% 58.6% 60.8%

HMM2
Gauss 86.4% 82.7% 84.5% 53.7% 49.9% 51.7%

Student-t 88.6% 84.1% 86.3% 56.3% 53.4% 54.8%

SYNC
Gauss 70.3% 62.1% 65.9% 53.9% 49.5% 51.6%

Student-t 73.3% 64.1% 68.4% 57.1% 53.9% 55.5%

PARAL
Gauss 83.3% 78.9% 81.0% 54.9% 49.9% 52.3%

Student-t 84.5% 80.8% 82.6% 59.3% 54.3% 56.7%

MULTI
Gauss 89.1% 86.5% 87.8% 59.1% 52.5% 55.6%

Student-t 92.1% 89.8% 90.9% 67.6% 59.6% 63.3%

Table 2. Results obtained from dataset-1 and dataset-2 after applying the rectification mechanism (RM) using i) individual HMMs to model

information from Stream 1 (HMM1); ii) individual HMMs to model information from Stream 2 (HMM2); iii) state-synchronous HMMs (SYNC);

iv) parallel HMMs (PARAL); v)multistream fused HMMs (MULTI); and vi) rectification driven fused HMM (RDFHMM) with a) Gaussian and

b) Student’s t-distribution as observation likelihood.

dataset-1 dataset-2
Recall Precision F-measure Recall Precision F-measure

HMM1+RM
Gauss 89.6% 83.9% 86.7% 72.0% 62.4% 66.9%

Student-t 90.2% 86.8% 88.5% 77.4% 66.7% 71.7%

HMM2+RM
Gauss 91.0% 86.4% 88.6% 69.5% 61.3% 65.1%

Student-t 93.5% 90.7% 92.1% 73.2% 62.3% 67.3%

SYNC+RM
Gauss 80.7% 77.1% 78.9% 70.4% 65.2% 67.7%

Student-t 80.1% 74.8% 77.4% 72.5% 66.4% 69.3%

PARAL+RM
Gauss 90.5% 87.2% 88.8% 73.9% 67.7% 70.7%

Student-t 90.3% 87.6% 88.9% 74.3% 66.3% 70.1%

MULTI+RM
Gauss 93.7% 91.2% 92.4% 73.1% 68.5% 70.7%

Student-t 94.2% 91.8% 92.9% 78.9% 72.3% 75.4%

RDFHMM
Gauss 93.8% 91.3% 92.5% 75.7% 70.4% 72.9%

Student-t 95.0% 93.2% 94.1% 79.8% 77.3% 78.5%


