
1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

A cross-domain recommender system using deep coupled autoencoders
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Long-standing data sparsity and cold-start constitute thorny and perplexing problems for the recommendation systems. Cross-domain
recommendation as a domain adaptation framework has been utilized to effectively address these challenging issues, by exploiting
information from multiple domains. In this study, an item-level relevance cross-domain recommendation task is explored, where two
related domains, that is, the source and the target domain contain common items. Additionally, a user-level relevance scenario is
considered, where the two related domains contain common users. In light of these scenarios, two novel coupled autoencoder-based
deep learning methods are proposed for cross-domain recommendation. The first method aims to simultaneously learn a pair of
autoencoders in order to reveal the intrinsic representations in the source and target domains, along with a coupled mapping function
to model the non-linear relationships between these representations. The second method is derived based on a new joint regularized
optimization problem, which employs two autoencoders to generate in a deep and non-linear manner the user and item-latent factors,
while at the same time a data-driven function is learnt to map the latent factors across domains. Extensive numerical experiments
are conducted illustrating the superior performance of our proposed methods compared to several state-of-the-art cross-domain
recommendation frameworks for the extreme cold start scenario.
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1 INTRODUCTION

Recommender systems are automated applications that suggest products to consumers based on their observed
interests [12, 26, 33]. A user’s preferences in items is stored in the form of interaction, such as numerical rating, within
a rating matrix. As a result, users, items, and the rating matrix form a domain [2]. The issues of cold start, sparsity and
inclusion of new customers or products may compromise the performance of recommenders [30, 37, 47]. While these
problems have been extensively studied from a single-domain viewpoint, cross-domain recommender systems (CDRS)
bring a different perspective to their solution [7].

A core challenge in cross-domain recommendation (CDR) is to improve recommendations in a target domain—often
suffering from data sparsity—by leveraging information from a related, data-rich source domain [5, 20, 29, 36, 39].
This challenge becomes especially acute in the extreme cold-start scenario, where no interactions are observed for
certain users or items in the target domain. In this setting, traditional recommendation algorithms fail, and effective
∗Both authors contributed equally to this research.
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cross-domain knowledge transfer is essential. The extreme cold-start scenario remains one of the most demanding and
practically relevant cases for cross-domain recommendation, motivating a growing body of research [4, 8–10, 13, 40].

The CDR problem has been explored under different perspectives and scenarios, aiming to address challenging
recommendation issues such as data sparsity. Data sparsity occurs when users interact with only a small fraction of
items, resulting in a sparse user-item interaction matrix. This sparsity severely limits the ability of recommender systems
to make accurate predictions because there is insufficient data to identify patterns and correlations between users and
items [30]. In general, CDR methods can be divided into three major categories, that is content-based frameworks,
embedding-based frameworks and rating pattern-based approaches [52]. Content-based approaches examine the CDR
problem from a content-level relevance point of view. Particularly, this type of methods aim to link various domains
by capturing and utilizing similar content information, such as user-generated reviews [8, 22, 40, 50, 51]. Contrary to
these methodologies, embedding-based approaches explore the CDR problem from a user-relevance or item-relevance
perspective. Exploiting common users and/or common items, this category extracts embedding knowledge (e.g.,
user/item latent factors) and then transfers it across domains through domain adaptation techniques such as neural
networks [21], [27] and transfer learning [28, 34, 46]. Finally, rating pattern-based approaches aim to transfer information
such as rating patterns from the source to the target domain [16, 24, 41].

In this study, we focus on embedding-based methods because they are designed to directly transfer knowledge
across domains by leveraging shared users or items, without the need for additional content features—which may not
always be available or reliable in real-world scenarios. Embedding-based approaches, and in particular those using
autoencoders, offer a compelling balance between competitive performance and computational efficiency. By learning
low-dimensional latent representations that capture the underlying structure of user-item interactions, these models
have proven highly effective at mitigating the sparsity problem and improving recommendation accuracy [42]. However,
current embedding-based methods have some limitations. A major shortcoming is that most approaches train
the autoencoders for the source and target domains independently [27, 40, 49, 54]. This separate training fails to
capture the crucial dependencies and shared patterns that exist across domains. For instance, shared users or items
often exhibit correlated behaviors in different domains; independent training cannot exploit these signals, resulting
in latent representations that are only locally optimal and not aligned across domains. Consequently, cross-domain
information is underutilized, leading to suboptimal recommendation accuracy. Furthermore, in these independent
schemes, the mapping function used to transfer knowledge from source to target is also learned separately, after the
autoencoders have been fixed. This two-stage pipeline can lead to significant information loss about the relationships
among shared users or items, and forces subsequent works to adopt complex mapping mechanisms or adversarial
training to compensate [17, 54]. Such designs not only increase model and training complexity, but also add to the
computational burden—an issue our framework aims to avoid by enabling joint learning and alignment of
representations during training.

To address these limitations, we introduce a family of coupled autoencoder frameworks for cross-domain recom-
mendation. At the heart of our approach is the idea of capturing and aligning the intrinsic representations of shared
entities (users or items) across domains, so as to facilitate efficient and effective knowledge transfer. Specifically, we
propose two methods: we first establish a foundation based on coupled learning and joint optimization of autoencoders,
enabling the direct transfer of knowledge through shared entities across domains. Building upon this, our second and
more advanced method introduces a novel hybrid prediction strategy that goes beyond coupling alone, allowing each
recommendation in the target domain to be informed not only by global patterns transferred from the source domain,
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but also by local, target-specific latent factors. This dual integration empowers the model to robustly adapt to both
transferable and domain-specific information.

We investigate two recommendation scenarios based on the categorization outlined in [53]: a cross-system recom-
mendation (CSR) task and a cross-domain recommendation (CDR) task. In the first task, we examine an item-level
relevance recommendation scenario. This assumes that the source and target domains contain common items (item
full overlap) but different users (user non-overlap) (see Figure 1). The second task considers a user-level relevance
scenario where the two related domains have common users (user full overlap) but different items (item non-overlap)
(see Figure 2). Note that, the proposed approaches are adaptable between CSR and CDR scenarios. The key difference lies
in the ’bridge’ element: for CSR, we use common items, while for CDR, we use common users. This interchangeability
allows CDR techniques to be applied to CSR scenarios and vice versa.

Our main contributions are as follows:

• Coupled Autoencoder Cross-Domain Recommendation (CACDR): We propose CACDR, a deep model
that learns a pair of coupled autoencoders for the source and target domains. When users or items are shared,
the source-domain encoder extracts latent representations which are then mapped via a neural network to
the target domain, where the decoder generates predictions. The autoencoders and the mapping function are
optimized jointly, allowing cross-domain alignment to emerge during training. This setup enables the full latent
representation of shared entities to be transferred, facilitating effective recommendations even when the target
domain is sparse.

• Latent Factor Autoencoder Cross-Domain Recommendation (LFACDR): LFACDR is formulated as a
novel joint optimization problem that simultaneously trains two coupled autoencoders—one per domain—along
with a mapping function that aligns their latent spaces. Each autoencoder reconstructs the user-item rating
matrix of its respective domain and produces latent representations (factors) for both users and items. The
model introduces coupling by enforcing that the latent representations of the shared entity (either users or
items) across domains remain consistent. This is achieved via a mapping network and a consistency loss
that penalizes misalignment between the transferred source representation and the native target one. Target
domain predictions are then computed by combining the transferred latent factors of the shared entity (via the
mapping network) with latent factors of the non-shared entity learned directly from the target domain. For
example, in a user-overlap setting, LFACDR transfers user embeddings from the source and combines them with
target-learned item embeddings to generate predictions. This design allows LFACDR to effectively integrate
global knowledge from the source domain with local information from the target domain, capturing both
transferable and domain-specific patterns. The entire model—autoencoders, mapping function, and decoders—is
trained jointly, enabling robust knowledge transfer and improved performance, especially under data-scarce or
extreme cold-start conditions.

• Coupled optimization and cross-domain alignment mechanism: In both methods, the coupling is realized
via a loss term that encourages proximity between the source representation and its mapped version in the
target space. However, the coupling operates differently: in CACDR, only the shared entity (users or items) is
encoded, mapped, and decoded across domains; in LFACDR, both users and items are encoded in both domains,
but only the shared side is transferred via the mapping function. The target prediction then relies on fusing the
mapped (shared) latent factor with the target-specific factor. All components are optimized together to reduce
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reconstruction and coupling losses, yielding a more principled and effective alignment of latent spaces than
traditional two-stage or decoupled methods.

• We evaluate both models under two CDR scenarios—user-level and item-level relevance—with an emphasis
on the extreme cold-start case, where all users (or items) are shared between domains but have only limited
interactions in the target domain. Our results demonstrate that both CACDR and LFACDR outperform many
baseline methods, with LFACDR offering superior accuracy due to its hybrid handling of transferred and local
features.

The remainder of the paper is organized as follows. Section 2 provides an overview of related research. Section 3
formally states the problem formulation. Section 4 presents and analyzes the proposed methods. Section 5 validates
the effectiveness of the proposed approaches through experiments on two public datasets used as source and target
domains. Section 6 reports an ablation study examining the important components of the proposed methods. Finally,
Section 7 summarizes our contributions and outlines directions for future research.

2 RELATEDWORKS

In literature, there is a plethora of studies attempting to address the challenging recommendation issues that emerge,
that is, the data sparsity and the cold start by developing CDR strategies. In recent years, the problem of CDR has
been tackled from multiple perspectives and different assumptions, thus rendering this problem particularly difficult
to describe under a unique generic framework [4], [52]. As we mentioned before, the proposed approaches belong to
the category of embedding-based methods. In general, these approaches primarily focus on transferring information
across domains using matrix factorization and transfer learning techniques based on shallow learning and deep learning
methodologies.

Shallow Learning: Focusing on the shallow learning methods, Singh et al. [35] used a matrix factorization approach
to transfer information across domains by sharing the user latent factor. Similarly, Pan et al. [32] employed a principled
matrix-based transfer learning methodology to extract and transfer knowledge concerning the users and items from the
source to the target domain. However, despite their efficiency, these methods can only extract relatively shallow and
linear attributes from the datasets in comparison to deep learning models which are able to capture more intricate and
non-linear aspects from the collaborative interactions between users and items.

Deep Learning: In recent years, various deep learning approaches have been proposed [7, 9–11, 14, 17, 19, 25, 27,
38, 41, 43, 44, 48, 51]. To analyze the limitations and gaps of existing literature, we provide a categorization of the
deep learning methodologies, which allows us to clearly situate our proposed framework within the current research
landscape.

Embedding Mapping-Based Methods: This broad class of methods focuses on transferring user and/or item
representations across domains by learning mapping functions, performing adversarial alignment, or leveraging graph
neural networks and attention, but without explicitly partitioning the latent space into domain-shared and
domain-specific subspaces. For example, EMCDR [27] learns latent user factors for each domain and applies a
multi-layer perceptron to map users’ representations from the source to the target domain, under the user-overlap
assumption. PTUPCDR [54] extends this framework by employing a meta-learning strategy to generate a personalized
bridge mapping for each user: it summarizes a user’s source-domain interaction history via attention, then dynamically
produces bridge parameters for adaptive transfer, optimizing the mapping for recommendation accuracy. DML [19]
introduces a global orthogonal mapping to align independently learned user embeddings between domains, supporting
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bidirectional transfer via linear projection. ACDR [17] adopts an adversarial learning framework, mapping global
user representations into domain-specific spaces with a GAN-based generator and discriminator, while also learning
domain-specific item embeddings through autoencoders. DARec [41] applies a domain-adversarial neural network to
extract domain-invariant user embeddings, training the encoder to make user representations indistinguishable between
source and target. Other representative works include graph and attention-based models that transfer information
through interaction graphs or GNNs [43, 48, 51], and a range of hybrid architectures that integrate side information or
additional transfer learning strategies [9–11, 14, 25, 41, 44]. Although these methods have achieved strong empirical
results—especially in cold-start and sparse data regimes—they generally rely on a two-stage pipeline, where embeddings
are first learned independently and only then mapped or aligned for transfer. As a result, the source and target latent
spaces may not be optimally co-adapted, and the mapping functions may struggle to fully capture nuanced relationships
between domains, especially in highly heterogeneous settings. Moreover, without hybridizing transferred and target-
specific features at prediction time, these approaches may under-utilize local context or fail to adapt to domain-specific
patterns.

Disentanglement-Based Methods. A second major direction in cross-domain recommendation explicitly seeks to
separate transferable and domain-specific information within the latent representation space, or to align distributions
globally rather than by individual mappings.Disentanglement-basedmethods enforce this separation by decomposing user
or item embeddings into domain-shared and domain-specific components, often with mutual information regularization,
orthogonality constraints, or adversarial objectives. For example, DisenCDR [6] utilizes a variational bipartite graph
encoder within a VAE framework, producing three embeddings for each user—one domain-shared and two domain-
specific—and applies mutual information penalties to enforce both exclusivity and informativeness of the shared
component. MADD [45] disentangles user embeddings using domain-adversarial and orthogonal losses, constructing
personalized user representations via multi-level attention. Li et al. [23] proposed DisAlign, a framework for Cross-
Domain Cold-Start Recommendation (CDCSR) that leveraged information from a ’warm’ source domain to improve
recommendation performance in a ’cold’ target domain. DisAlign utilized rating and auxiliary representations and
introduced Stein path alignment to efficiently align latent embedding distributions across domains. While these methods
provide improved theoretical guarantees against negative transfer and can yield more interpretable representations,
they often introduce additional modeling complexity (e.g., multiple encoders, regularization tuning), may risk discarding
informative but non-shared signals, and in many cases base target domain prediction solely on the transferred or shared
representation, without hybridizing with domain-specific or locally learned factors.

Among the various categories of cross-domain recommendation, our proposed methods are most closely related
to the family of embedding mapping-based approaches, which seek to transfer latent representations across domains
via learned mapping functions. Methods in this category, such as PTUPCDR [54], ACDR-GAN [17], DML [19], and
DARec [41], have driven much of the recent progress in the field. However, they exhibit fundamental structural
limitations that our approaches are designed to overcome. First, these methods invariably adopt a two-stage
training pipeline: user and item embeddings for source and target domains are learned independently—typically via
autoencoders or matrix factorization—with no cross-domain interaction or co-adaptation during embedding learning.
The transfer of knowledge is then handled exclusively through amapping function, which is trained after the embeddings
are fixed; this mapping may be linear (DML), meta-learned (PTUPCDR), or adversarial (ACDR-GAN), but in all cases, it
is introduced post-hoc. This separation leads to latent spaces that are not mutually aligned or optimized for cross-domain

transfer, making it challenging to discover optimal transformations and reducing the effectiveness of knowledge transfer,

especially under data sparsity or cold-start conditions. Second, the complexity of the mapping function. While
5
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sophisticated objectives such as adversarial training (ACDR-GAN) or personalized bridges (PTUPCDR) are designed to
increase flexibility, they often introduce instability, require extensive hyperparameter tuning, and add to the overall
training complexity. Conversely, simpler mappings (e.g., the orthogonal transformation in DML) can be too rigid to
capture the nonlinear relationships often required between distinct domains, especially when representations have been
trained independently. Furthermore, these methods typically do not structurally distinguish between domain-shared and
domain-specific representations, a limitation that has only recently begun to be addressed by disentanglement-based
models.

Disentanglement-Based and Distribution Alignment Methods. A parallel line of research in CDR explicitly
seeks to decompose the latent space into transferable and domain-specific subspaces, often using information-theoretic,
orthogonality, or adversarial regularization. DisenCDR [6] utilizes a variational bipartite graph encoder within a VAE
framework, producing three embeddings for each user—one domain-shared and two domain-specific—and applies mutual
information penalties to enforce both exclusivity and informativeness of the shared component.MADD [45] disentangles
user embeddings using domain-adversarial and orthogonal losses, constructing personalized user representations via
multi-level attention.DisAlign [23] instead focuses on aligning the overall distribution of latent representations between
domains using a Stein path approach, thereby facilitating transfer under extreme cold-start conditions. These methods
provide improved theoretical guarantees against negative transfer and can yield more interpretable representations,
especially when the domains are similar and the assumption of common underlying information is true. However, they
often introduce additional modeling complexity (e.g., multiple encoders, regularization tuning), may risk discarding
informative but non-shared signals, and in several cases base target domain prediction solely on the transferred or
shared representation, without hybridizing with domain-specific or locally learned factors.

Addressing These Limitations: Our proposed frameworks directly address the core limitations observed in
embedding mapping-based methods. Unlike most prior art, both of our models ensure that latent spaces are co-adapted
for transfer during the training process itself, rather than relying on after-the-fact mapping. By jointly training
the autoencoders for the source and target domains in a coupled manner, our models capture both the intrinsic
structures within each domain and the critical cross-domain dependencies. This approach eliminates the inefficiencies of
independent training, allowing the learned latent representations to be naturally aligned during the learning process. As
a result, the mapping function that transfers information between domains can be much simpler—typically implemented
as a lightweight MLP—without requiring the complex or unstable architectures (such as adversarial or meta-learned
mappings) used in previous work. In this way, our models achieve effective and robust knowledge transfer, even in
highly sparse or cold-start scenarios, while maintaining low computational and implementation complexity.

The key distinction between our two proposed methods lies in the handling of domain-specific knowledge at
prediction time. The first method, CACDR, focuses on transferring the full representation of the shared entity (user or
item) from the source to the target domain and uses it directly for prediction. In contrast, our second method, LFACDR,
introduces a novel hybrid integration mechanism: for each recommendation in the target domain, LFACDR explicitly
fuses the transferred latent factor of the shared entity (via the mapping network) with a latent factor for the non-shared
entity that is learned directly from the target domain. This design enables LFACDR to flexibly leverage both global
knowledge transferred from the source and local, domain-specific patterns unique to the target, providing a more
contextually adaptive and accurate solution. This hybrid strategy stands in contrast to both prior embedding-mapping
approaches (which ignore local adaptation) and disentanglement-based methods (which enforce a strict separation),
offering a more practical balance. In practical terms, this means that our LFACDR method can utilize both the strengths
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Source Domain
𝑅𝑠

Target Domain
𝑅𝑡Items

Users Source Domain Users Target Domain

Items Full Overlap & Users Non-Overlap

Fig. 1. The item-level relevance CSR task. We assume two related domains, which contain the same items (item full overlap)
corresponding to different users (user non-overlap).

of transferred global knowledge and the fine-grained details unique to the target domain, a balance that prior methods
struggle to achieve.

3 NOTATIONS AND PROBLEM FORMULATION

Table 1 summarizes all the required notations of this study. In the literature the two domains are often referred as
the ’source’ and ’target’ domains. Without loss of generality, let 𝑹𝑠 ∈ R𝑚×𝑛 and 𝑹𝑡 ∈ R𝑚×𝑛 be the rating matrices
representing the ratings between𝑚 items and 𝑛 users for the source and the target domain respectively, where 𝑹𝑠 (𝑖, 𝑗)
represents the rating of the user 𝑗 for the item 𝑖 in the source domain and 𝑹𝑡 (𝑖, 𝑗) represents the corresponding rating
in the target domain. Furthermore, we denote as 𝑴𝑠 = [[𝒎𝑠

1]
⊤; [𝒎𝑠

2]
⊤; ...] = 𝑹𝑠 , 𝑴𝑡 = [[𝒎𝑡

1]
⊤; [𝒎𝑡

2]
⊤; ...] = 𝑹𝑡 the

item rating matrix of the source and target domain and 𝑼 𝑠 = [[𝒖𝑠1]
⊤; [𝒖𝑠2]

⊤; ...] = 𝑹𝒔⊤, 𝑼 𝑡 = [[𝒖𝑡1]
⊤; [𝒖𝑡2]

⊤; ...] = 𝑹𝒕⊤

the user rating matrix of the source and the target domain, respectively. In general, the item rating vector 𝒎𝑠
𝑖
∈ R1×𝑛

describes the rating relationship between the item 𝑖 and all the users in the source domain, whereas the user rating vectors
𝒖𝑠
𝑖
∈ R1×𝑚 describes the rating relationship between the user 𝑖 and all the items of the source domain. Accordingly, the

item and user rating vectors 𝒎𝑡
𝑖
, 𝒖𝑡

𝑖
represent the corresponding rating relations of the target domain.

Taking into consideration that both domains share the same items or users, our primary goal is to exploit and extract
knowledge from the source domain and transfer it to the target domain; this way it is possible to make recommendations
for items (or users) with no ratings or little information, thus tackling the data sparsity and the cold-start problem in
target domain. In more detail, this task can be seen as a domain adaptation procedure (transfer learning) [31], which
aims to describe the unknown mathematical relationships between the source and target domains. Nonetheless, by
tackling this kind of problem two major questions emerged and need to be answered: (i) what to transfer - which
information is beneficial to transfer across the domains; and (ii) how to transfer - which learning procedure could be
employed to transfer the knowledge. To this end, we address these crucial questions by developing two novel CDR
frameworks based on a coupled autoencoder approach.

4 PROPOSED MODELS

In this section, we derive two coupled autoencoder frameworks that can be used for the CDR problem. Specifically,
the first one, named CACDR employs a coupled autoencoder method to capture and model the complex relationships
between the users and items from the source and target domain, while the second one, named LFACDR can be considered
as an extension of the former one utilizing the autoencoders in order to learn in a deep and non-linear manner the user
and item-latent factors models in the respective domains. After modeling domain-specific information in the source
domain, both methods transfer that information to the target domain using a deep learning network. This transfer
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Source Domain
𝑅𝑠

Target Domain
𝑅𝑡Users

Items Source Domain Items Target Domain

Users Full Overlap & Items Non-Overlap

Fig. 2. The user-level relevance CDR task. We assume two related domains, which contain the same users (user full overlap)
corresponding to different items (item non-overlap).

Table 1. Mathematical Notations

Symbol Description

Source Domain
𝑛 The number of users of the source and target domain
𝑚 The number of items of the source and target domain
𝑘 The dimension of the autoencoder

hidden intrinsic representation
𝑹𝑠 ∈ R𝑚×𝑛 The rating matrix of the source domain
𝑹𝑠 ∈ R𝑚×𝑛 The predicted rating matrix of the source domain
𝑼 𝑠 ∈ R𝑛×𝑚 The user rating matrix of the source domain
𝑴𝑠 ∈ R𝑚×𝑛 The item rating matrix of the source domain
𝒀 𝑠𝑒 ∈ R𝑛×𝑘 The output of the encoder of 𝑼 𝑠

𝑿𝑠
𝑒 ∈ R𝑚×𝑘 The output of the encoder of 𝑴𝑠

𝑼 𝑠 ∈ R𝑛×𝑚 The output of the decoder of 𝒀𝒆𝑠

𝑴̂𝑠 ∈ R𝑚×𝑛 The output of the decoder of 𝑿𝒆
𝑠

Target Domain
𝑹𝑡 ∈ R𝑚×𝑛 The rating matrix of the target domain
𝑹𝑡 ∈ R𝑚×𝑛 The predicted rating matrix of the target domain
𝑼 𝑡 ∈ R𝑛×𝑚 The user rating matrix of the target domain
𝑴𝑡 ∈ R𝑚×𝑛 The item rating matrix of the target domain
𝒀 𝑡𝑒 ∈ R𝑛×𝑘 The output of the encoder of 𝑼 𝑡

𝑿𝑡
𝑒 ∈ R𝑚×𝑘 The output of the encoder of 𝑴𝑡

𝑼 𝑡 ∈ R𝑛×𝑚 The output of the decoder of 𝒀𝒆𝑡

𝑴̂𝑡 ∈ R𝑚×𝑛 The output of the decoder of 𝑿𝒆
𝑡

mechanism can be implemented through either a simpler architecture e.g., a Multilayer Perceptron (MLP) or a more
complex one such as a Generative Adversarial Network (GAN).

4.1 The CACDR Method

Autoencoders have demonstrated ground-breaking performance in the unsupervised feature learning domain. Formally,
the autoencoder aims to reveal and describe the intrinsic hidden representation of the input by copying its input to its
output [3]. However, the autoencoder as a single domain procedure produces intrinsic representations based only on
the input data, thus ignoring the valuable underlying relationships that exist across multiple domains. On the other
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(a) Initialization- Item-level relevance scenario.

(b) Coupled Learning - Item-level relevance scenario.

Fig. 3. An illustration of our proposed CACDR model for cross-domain recommendation.(a) Initialization: First the autoencoders are
trained to learn the intrinsic representations of the source and target domain (stage 1) and then a mapping function is learnt between
these representations (stage 2). (b) Coupled Learning: since the autoencoders are trained independently and there is no transfer
learning across domains, a coupled autoencoder is employed in order to jointly optimize all the active parts of the autoencoders i.e.,
the source encoder, the mapping network and the target decoder) involved in the rating prediction in target domain (stage 3). Note
that we follow similar procedure for the user-level relevance task using the corresponding User rating matrices in source
and target domain

9



469

470

471

472

473

474

475

476

477

478

479

480

481

482

483

484

485

486

487

488

489

490

491

492

493

494

495

496

497

498

499

500

501

502

503

504

505

506

507

508

509

510

511

512

513

514

515

516

517

518

519

520

Conference acronym ’XX, June 03–05, 2018, Woodstock, NY Alexandros Gkillas and Dimitrios Kosmopoulos

hand, the coupled autoencoder model is able to capture these internal relationships and derive better representations
as the domains influence each other. In particular, the proposed coupled autoencoder based method for CDR, called
CACDR consists of three stages. The first stage employs two autoencoders that learn separately the intrinsic hidden
representations of the item rating matrices (item-level relevance scenario) or user rating matrices (user-level relevance
scenario) of the source and target domain, respectively. The second stage uses a neural network to model the relationship
across domains by learning a mapping function between the intrinsic representations of the source and target domain.
In the previous two stages the autoencoders and the mapping function are trained independently. Thus, we introduce
coupling at the third stage in order to capture the underlying complex relationships across domains and transfer
beneficial knowledge from one domain to the other during the training procedure. Finally, recommendations can be
made for a new item or user in the target domain based on the intrinsic representations of the same item or user in the
source domain. The complete proposed methodology is depicted in Fig. 3.

4.1.1 Coupled Autoencoder-Based . Focusing on the item-level relevance scenario, we consider the item rating matrices
of the source and target domains denoted as 𝑴𝑠 , 𝑴𝑡 respectively. Note that for the user-level relevance scenario, we
employ the user rating matrices in the source and target domain denoted as 𝑼 𝑠 , 𝑼 𝑡 . Next, we describe the method only
for the item-level relevance task, since the methodology is identical for the user-level relevance scenario as well. The
corresponding source and target autoencoders, which learn the hidden intrinsic representations of the two matrices,
can be obtained by minimizing the following loss functions:

L𝑠
𝑎𝑢𝑡𝑜𝑒𝑛𝑐 =




𝑴𝑠 − 𝑴̂𝑠



2
𝐹
=


𝑴𝑠 − D𝑠 (E𝑠 (𝑴𝑠 ))



2
𝐹

L𝑡
𝑎𝑢𝑡𝑜𝑒𝑛𝑐 =




𝑴𝑡 − 𝑴̂𝑡



2
𝐹
=


𝑴𝑡 − D𝑡 (E𝑡 (𝑴𝑡 ))



2
𝐹
, (1)

where 𝑴̂𝑠 , 𝑴̂𝑡 denote the estimated item rating matrices of the source and the target domain, respectively. Formally,
the autoencoder comprises of the encoding E(.) and decoding D(.) process.

Encoding process: The intrinsic representation of the source item rating matrix 𝑴𝑠 ∈ R𝑚×𝑛 is given by

𝑿𝑠
𝑒 = E𝑠 (𝑴𝑠 )

or equivalently,

𝑿𝑠
𝑒,1 = 𝜑 (𝑾𝑠

𝑒,1𝑴
𝑠 + 𝑏𝑠𝑒,1)

𝑿𝑠
𝑒,2 = 𝜑 (𝑾𝑠

𝑒,2𝑿
𝑠
𝑒,1 + 𝑏

𝑠
𝑒,2) (2)

...

𝑿𝑠
𝑒 = 𝜑 (𝑾𝑠

𝑒,𝐿𝑿
𝑠
𝑒,𝐿−1 + 𝑏

𝑠
𝑒,𝐿),

where 𝑾𝑠
𝑒,𝑖
, 𝑏𝑠

𝑒,𝑖
(𝑖 = 1, . . . , 𝐿) denote the weight matrices and the bias terms for the encoding layers of the source

autoencoder, 𝜑 (.) is the activation function ReLU, 𝐿 stands for the number of hidden layers, 𝑿𝑠
𝑒 ∈ R𝑚×𝑘 is the output

of the source encoder E𝑠 (.) and 𝑘 ≪ 𝑛.
Similarly, the intrinsic representation of the target item rating matrix 𝑴𝑡 ∈ R𝑚×𝑛 can be defined as

𝑿𝑡
𝑒 = E𝑡 (𝑴𝑡 )

10



521

522

523

524

525

526

527

528

529

530

531

532

533

534

535

536

537

538

539

540

541

542

543

544

545

546

547

548

549

550

551

552

553

554

555

556

557

558

559

560

561

562

563

564

565

566

567

568

569

570

571

572

A cross-domain recommender system using deep coupled autoencoders Conference acronym ’XX, June 03–05, 2018, Woodstock, NY

or equivalently,

𝑿𝑡
𝑒,1 = 𝜑 (𝑾𝑡

𝑒,1𝑴
𝑡 + 𝑏𝑡𝑒,1)

𝑿𝑡
𝑒,2 = 𝜑 (𝑾𝑡

𝑒,2𝑿
𝑡
𝑒,1 + 𝑏

𝑡
𝑒,2) (3)

...

𝑿𝑡
𝑒 = 𝜑 (𝑾𝑡

𝑒,𝐿𝑿
𝑡
𝑒,𝐿−1 + 𝑏

𝑡
𝑒,𝐿),

where 𝑾𝑡
𝑒,𝑖
, 𝑏𝑡

𝑒,𝑖
(𝑖 = 1, . . . , 𝐿) denote the weight matrices and the bias terms for the encoding layers of the target

autoencoder, 𝜑 (.) is the activation function ReLU, 𝐿 stands for the number of hidden layers, 𝑿𝑡
𝑒 ∈ R𝑚×𝑘 denotes the

output of the target encoder E𝑡 (.) and 𝑘 ≪𝑚.
Decoding process: Accordingly, the reconstructed item rating matrices 𝑴̂𝑠 , 𝑴̂𝑡 can be derived by

𝑴̂
𝑠
= D𝑠 (𝑿𝑠

𝑒 ) (4)

𝑴̂
𝑡
= D𝑡 (𝑿𝑡

𝑒 ), (5)

where D𝑠 (.) denotes the decoding procedure of the source autoencoder and D𝑡 (.) is the decoding procedure of the
target autoencoder. Note that both decoders also consist of 𝐿 fully connected layers.

To put in a nutshell, the encoding procedure aims to learn a concrete representation of the input in order to capture
the complex relationships between the items and users. On the other hand, the decoding process seeks to decode the
hidden representations back to the original rating matrices. The accurate decoding procedure enables the autoencoder
to learn the rating patterns between items and users and make rating predictions for new items and users.

4.1.2 Non Linear Mapping. After obtaining the intrinsic representations of the item (or user) rating matrices, a deep
learning network is employed to capture and model the underlying relationship between the intrinsic representations of
the source and target domain (𝑿𝑠

𝑒 , 𝑿𝑡
𝑒 ), thus transferring the appropriate knowledge from the source to target domain.

This transfer mechanism can be implemented through either a simpler architecture like a Multilayer Perceptron (MLP)
or a more complex one such as a Generative Adversarial Network (GAN). Mathematically, the non-linear mapping
function F𝜃 (.) can be written as

𝑿𝑡
𝑒 = F𝜃 (𝑿𝑠

𝑒 ) (6)

where 𝜃 denote the weight parameters of the mapping network. Thus, the parameters of the mapping network can be
learned minimizing the following loss function

L𝑚𝑙𝑝 =




𝑿𝑡
𝑒 − 𝑿𝑡

𝑒




2
𝐹
=


𝑿𝑡

𝑒 − F𝜃 (𝑿𝑠
𝑒 )


2
𝐹
. (7)

4.1.3 Cross-domain Rating Predictions. The goal of the proposed framework is to recommend new items in the target
domain leveraging upon the knowledge of the same items belonging in the source domain (item-level relevance scenario)
or new users in target domain using information of the same users in source domain (user-level relevance scenario). In
particular, given an item or user 𝑗 in the target domain, the following methodology is used to recover its predicted
rating:

1. The same item or user is found in the source domain and its intrinsic representation is obtained by employing the
autoencoder of the source domain (encoding procedure) according to equation (2).
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2. The corresponding intrinsic representation of the item/user in the target domain can be estimated via the intrinsic
representation of the item/or user in the source domain and the mapping network based on (6).

3. Finally, the predicted rating of the item/user in the target domain is recovered based on target autoencoder (decoding
procedure) according to (5).

4.1.4 Coupled Learning. The most critical part of the proposed architecture is the optimization and coupling of the
autoencoders along with the mapping function. However, by learning the autoencoders first via relation (1) and then
the mapping function (based on the estimated intrinsic representations) via relation (6) may lead to poor performance,
since the autoencoders and the mapping function are optimized independently. In other words, there is no transfer
or coupled learning between the source domain (i.e., source rating matrix) and the target domain (i.e., target rating
matrix). This procedure is piecemeal and thus sub-optimal, since there is no influence from one to the other during the
training process. Nevertheless, this methodology can be used as initialization process of the model.

In light of the fact that the ultimate goal of the CACDR method is to efficiently predict the item ratings of the target
domain (i.e., the item rating matrix,𝑴𝑡 = 𝑹𝑡 in the item-level relevance scenario or the user matrix, 𝑼 𝑡 in the user-level
relevance scenario ), the proposed objective function for optimizing jointly the two autoencoders (source and target)
along with the mapping network may be written as:


𝑴𝑡 − 𝑴̂𝑡




2
𝐹

(5)
===⇒




𝑴𝑡 − D𝑡 ( ˆ𝑿𝒆
𝑡 )



2
𝐹

(6)
===⇒

𝑴𝑡 − D𝑡 (F𝜃 (𝑿𝒔

𝒆)


2
𝐹
. (8)

Thus, using equation (2), the corresponding loss function that we seek to minimize during the coupled learning is given
by

L𝑐𝑜𝑢𝑝𝑙𝑒𝑑_𝑙𝑒𝑎𝑟𝑛𝑖𝑛𝑔 =


𝑴𝑡 − D𝑡 (F𝜃 (E𝑠 (𝑴𝒔 )



2
𝐹
. (9)

Note that now in relation (9) the source encoder E𝑠 (.), the mapping neural network F𝜃 (.) and the target decoderD𝑡 (.)
are all explicitly involved in the reconstruction of the desired output 𝑴 𝒕 . Hence, in order to couple the two autoencoders

with the mapping function a coupled deep network is employed, where its first network component is the source encoder,

the second network component is the mapping neural network and its final network component is the target decoder. Fig. 3b
illustrates the proposed coupled architecture. Having obtained, the stacked network architecture the back-propagation
algorithm is used to optimize (9). Algorithm 1 summarizes the proposed methodology.

Algorithm 1 : CACDR learning method

Require: The item rating matrices of the source and target domain 𝑴𝑠 ∈ R𝑚×𝑛 , 𝑴𝑡 ∈ R𝑚×𝑛 for the item-level
relevance scenario, or the item user rating matrices 𝑼 𝑠 ∈ R𝑛×𝑚 , 𝑼 𝑡 ∈ R𝑛×𝑚 for the user-level relevance scenario

Ensure: The predicted rating matrix of the target domain 𝑹𝑡

{Stage A: Initialization}
1: Initialize the source domain autoencoder by learning the intrinsic representation𝑿𝑠

𝑒 ∈ R𝑚×𝑘 of the matrix𝑴𝑠 (item-
level relevance scenario) or 𝑼 𝑠 (user-level relevance scenario) via (2).

2: Initialize the target domain autoencoder by learning the intrinsic representation 𝑿𝑡
𝑒 ∈ R𝑚×𝑘 of the matrix𝑴𝑡 (item-

level relevance scenario) or 𝑼 𝑡 (user-level relevance scenario) via (3).
3: Initialize the mapping network by learning the mapping function from 𝑿𝑠

𝑒 to 𝑿𝑡
𝑒 via (6).

{Stage B: Coupled Learning}
4: Construct the CACDR model via (9).
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(a) Initialization.

(b) Coupled Learning - Item-level relevance scenario.

Fig. 4. An illustration of the proposed LFACDR model for cross-domain recommendation.(a) Initialization: First, the autoencoders are
trained to obtain the item and user-latent factors of the source and target domain (stage 1) and then a mapping function is learnt
between the item latent factor matrices of the source and target domain (stage 2). (b) Coupled Learning: A coupled autoencoder
model is employed in order to jointly optimize all the active parts of the autoencoders (i.e., the Source Encoder 1, the mapping
network and the Target Encoder 2) involved in the rating prediction in target domain (stage 3). Note that we follow similar procedure
for the user-level relevance task using the corresponding User rating matrices in source and target domain.

4.2 The LFACDR Method

As previously mentioned, the autoencoders constitute an ideal mathematical tool to reveal and learn complex low
dimensional representations while at the same time they preserve the underlying structure of the input data. This
consideration motivates the ensuing cross domain recommendation methodology that a joint optimization problem is
proposed in order to recover in a deep and non-linear manner the user and item-latent factors in both source and target
domains. To this end, for each domain two autoencoders are employed to jointly learn the intrinsic representations
of user and item rating matrices and decompose the rating matrix into two low-rank matrices, that is the user and
item-latent factor matrix. The proposed framework is shown in Fig. 4.

4.2.1 Latent Factor Modeling based on Autoencoders. Consider the user rating matrix 𝑼 𝑠 ∈ R𝑛×𝑚 , the item rating
matrix𝑴𝑠 ∈ R𝑚×𝑛 and the rating matrix 𝑹𝑠 ∈ R𝑛×𝑚 of the source domain. To obtain the user and item-latent factors of
the source domain the following joint constrained optimization problem is proposed, which includes one autoencoder
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for the items and one autoencoder for the users. Hence, the proposed optimization problem is formulated as

L𝑠 =


𝑴𝑠 − D𝑠

𝑚 (𝑿𝒔
𝒆)


2
𝐹
+


𝑼 𝑠 − D𝑠

𝑢 (𝒀 𝒔
𝒆 )


2
𝐹
+

𝒀 𝒔

𝒆 − E𝑠
𝑢 (𝑼 𝒔 )



2
𝐹

+


𝑿𝒔

𝒆 − E𝑠
𝑚 (𝑴𝒔 )



2
𝐹
+ (10)

𝜆




𝑿𝒔
𝒆 𝒀

𝒔
𝒆
𝑇 − 𝑹𝒔




2
𝐹
,

where D𝑠
𝑚 (.), E𝑠

𝑚 (.) denote the decoding and encoding procedure of the first source autoencoder (items), 𝑿𝒆
𝒔 ∈ R𝑚×𝑘

is the item-latent factor matrix derived from the output of the first encoder, D𝑠
𝑢 (.), E𝑠

𝑢 (.) stand for the decoding and
encoding procedure of the second source autoencoder (users) and 𝒀 𝒆

𝒔 ∈ R𝑛×𝑘 denotes the user-latent factor matrix
derived from the output of the second encoder. Note that the encoding and decoding processes of two autoencoders can
be written alternatively according to equations (2) and (4).

The two autoencoders aim to learn jointly the intrinsic representations of the item and user rating matrices. At the
same time, through the proposed constraint optimization problem these intrinsic representations that is the 𝑿𝑠

𝑒 and 𝒀 𝑠𝑒
act as the desired item and user-latent factor matrices, respectively. Note that similar procedure can be employed to
derive the corresponding item and user-latent factor matrices 𝑿𝑡

𝑒 and 𝒀 𝑡𝑒 of the target domain.

4.2.2 Non Linear Mapping. Having acquired the latent factor matrices {𝑿𝑒
𝑠 , 𝒀

𝑒
𝑠 ,𝑿

𝑒
𝑡 , 𝒀

𝑒
𝑡 } of items and users in the source

and target domain, similar to the previous proposed method, a neural network such as a simple MLP or a more
complex network is again used to learn the mapping function between the item latent factor matrices of the source and
target domain (𝑿𝑠

𝑒 , 𝑿𝑡
𝑒 ) for the item-level relevance scenario or the the user latent factor matrices of the source and

target domain (𝒀 𝑠𝑒 , 𝒀 𝑡𝑒 ) for the user-level relevance scenario. Concerning, the item-level relevance scenario, this can be
expressed as follows,

𝑿𝑡
𝑒 = F𝜃 (𝑿𝑠

𝑒 ) (11)

Similarly, the parameters of the mapping network can be learned solving the following loss function

L𝑚𝑙𝑝 =




𝑿𝑡
𝑒 − 𝑿𝑡

𝑒




2
𝐹
=


𝑿𝑡

𝑒 − F𝜃 (𝑿𝑠
𝑒 )


2
𝐹
. (12)

Note that for the user-level relevance scenario, the mapping function is defined as follows

𝒀 𝑡𝑒 = F𝜃 (𝒀 𝑠𝑒 ) (13)

4.2.3 Rating prediction. In general, given a new item (item-level relevance task) or a new user (user-level relevance
task) in the target domain with little information, we are not able to calculate an accurate latent factor for making
recommendation. In light of this, the corresponding latent factor is learnt from the source domain and a latent factor is
derived for the same item or same user in the target domain via the mapping function (11). Concerning, the item-level
relevance task the predicted rating between item 𝑖 and user 𝑗 in the target domain is given by the following relation,

𝑹𝑡 (𝑖, 𝑗) = 𝑿𝑡
𝑒 (𝑖, :) 𝒀 𝑡𝑒 ( 𝑗, :)𝑇 (14)

where 𝑿𝑡
𝑒 (𝑖, :) ∈ R1×𝑘 denote the estimated item-latent factor of item 𝑖 in the target domain based on the corresponding

item-latent factor of item 𝑖 in the source domain via relation (11) and 𝒀 𝑡𝑒 (𝑖, :) ∈ R1×𝑘 stands of the row vector of matrix
𝒀 𝑡𝑒 , representing the user-latent factor of user 𝑗 in the target domain.
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Similarly, regarding the user-level relevance the predicted rating between item 𝑖 and user 𝑗 in the target domain is
given by the following relation,

𝑹𝑡 (𝑖, 𝑗) = 𝑿𝑡
𝑒 (𝑖, :) 𝒀̂

𝑡
𝑒 ( 𝑗, :)𝑇 (15)

where 𝒀 𝑡𝑒 ( 𝑗, :) ∈ R1×𝑘 denote the estimated user-latent factor of user 𝑗 in the target domain based on the corresponding
user-latent factor of user 𝑗 in the source domain via the mapping function in relation (11)

4.2.4 Coupled Learning. Similar to the previous procedure the training can be divided into two phases: the first phase
is the initialization and the second phase is the coupled learning. Initialization: First, the autoencoders are trained to
obtain the item and user-latent factors of the source and target domain and then the mapping function is learnt.
Coupled learning - Item-level relevance scenario: Since the aim of the proposed method in this scenario is to accurately
predict the ratings of new items in the target domain, the objective function for jointly optimizing the autoencoders
extracting the item and user-latent factor matrices along with the mapping network is given by


𝑹𝑡 − 𝑹𝑡




2
𝐹
⇒




𝑹𝑡 − 𝑿𝑡
𝑒 (𝒀 𝑡𝑒 )⊤




2
𝐹

(11)
====⇒

𝑹𝑡 − F𝜃 (𝑿𝑠

𝑒 ) (𝒀 𝑡𝑒 )⊤


2
𝐹

(16)

where 𝑿𝑠
𝑒 = E𝑠

𝑚 (𝑴𝑠 ) and 𝒀 𝑡𝑒 = E𝑡
𝑢 (𝑼 𝒕 ) . Hence, we aim to minimize the following loss function during the coupled

learning stage

L𝑐𝑜𝑢𝑝𝑙𝑒𝑑_𝑙𝑒𝑎𝑟𝑛𝑖𝑛𝑔 =


𝑹𝑡 − F𝜃 (𝑿𝑠

𝑒 ) (𝒀 𝑡𝑒 )⊤


2
𝐹
+

𝑿𝑠

𝑒 − E𝑠
𝑚 (𝑴𝑠 )



2
𝐹
+


𝒀 𝑡𝑒 − E𝑡

𝑢 (𝑼 𝒕 )


2
𝐹
. (17)

From relation (17) it is easy to verify that the source encoder for the items E𝑠
𝑚 (.), the target encoder for the users E𝑡

𝑢 (.)
and mapping network are all explicitly involved in the reconstruction of the desired output 𝑹𝑡 . Thus, the three network
units can be coupled together by jointly optimizing them through the back propagation algorithm. Coupled learning -

User-level relevance scenario: The aim of the proposed method in this scenario is to accurately predict the ratings of
new users in the target domain, the objective function for jointly optimizing the autoencoders extracting the item and
user-latent factor matrices along with the mapping network is given by


𝑹𝑡 − 𝑹𝑡




2
𝐹
⇒




𝑹𝑡 − 𝑿𝑡
𝑒 (𝒀̂

𝑡
𝑒 )𝑇




2
𝐹

(11)
====⇒

𝑹𝑡 − 𝑿𝑡

𝑒 (F𝜃 (𝒀 𝑠𝑒 ))⊤


2
𝐹

(18)

where 𝑿𝑡
𝑒 = E𝑡

𝑚 (𝑴𝑡 ) and 𝒀 𝑠𝑒 = E𝑠
𝑢 (𝑼 𝒔 ) . Thus, the loss function during this stage is

L𝑐𝑜𝑢𝑝𝑙𝑒𝑑_𝑙𝑒𝑎𝑟𝑛𝑖𝑛𝑔 =




𝑹𝑡 − 𝑿𝑡
𝑒 (F𝜃 (𝒀 𝑠𝑒 ))𝑇




2
𝐹
+

𝑿𝑡

𝑒 − E𝑡
𝑚 (𝑴𝑡 )



2
𝐹
+


𝒀 𝑠𝑒 − E𝑠

𝑢 (𝑼 𝒔 )


2
𝐹
. (19)

Fig. 4b demonstrates the proposed coupled framework. The overall methodology is summarized in Algorithm 2.

5 EXPERIMENTAL VALIDATION

To validate the efficacy and applicability of the two proposed methods, extensive experiments were conducted in the
context of the extreme cold-start problem. In particular, this study examines two scenarios: the first one focuses on an
item-level relevance Cross-System Recommendation scenario, where two domains (source and target) share common
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Algorithm 2 : LFACDR learning method

Require: The item rating matrices of the source and target domain 𝑴𝑠 ∈ R𝑚×𝑛 , 𝑴𝑡 ∈ R𝑚×𝑛 and corresponding user
rating matrices 𝑼 𝑠 ∈ R𝑛×𝑚 , 𝑼 𝑡 ∈ R𝑛×𝑚

Ensure: The predicted rating matrix of the target domain 𝑹𝑡

{Stage A: Initialization}
1: Initialize the two source domain autoencoders by learning the item-latent factor matrix 𝑿𝑠

𝑒 ∈ R𝑚×𝑘 and the
user-latent factor matrix 𝒀 𝑠𝑒 ∈ R𝑛×𝑘 via (10).

2: Initialize the two target domain autoencoders by learning the item-latent factor matrix 𝑿𝑡
𝑒 ∈ R𝑚×𝑘 and the

user-latent factor matrix 𝒀 𝑡𝑒 ∈ R𝑛×𝑘 via (10).
3: Initialize the mapping network by learning the mapping function from 𝑿𝑠

𝑒 to 𝑿𝑡
𝑒 for the the item-level relevance

scenario via (11) or 𝒀 𝑠𝑒 to 𝒀 𝑡𝑒 for the user-level relevance scenario via (13) .
{Stage B: Coupled Learning}

4: Construct the LFACDR model via (17) for the item-level relevance scenario or (19) for the user-level relevance
scenario.

items (e.g., movies) and contain different users; the second scenario examines a user-level relevance cross-domain
recommendation scenario, where the source and target domain share common users and contain different items e.g.,
(the source domain may contain movies as items and the target domain may contain books as items) . Our goals are to
demonstrate:

• that the proposed methods are capable to exploit and transfer valuable information from the source domain to
improve the recommendation performance in the target domain, thus tackling effectively the sparsity problem,
in which items (e.g., movies) or users in target domain have limited historic information.

• the effect of different sparsity levels of the rating matrices in the source and target domains.
• the performance of the methods in comparison to other state-of-the-art approaches.

5.1 Datasets

Item-level relevance CSR scenario - Datasets: Two publicly available benchmark datasets were employed to
demonstrate the merits of the proposed recommendation frameworks. Namely, we used the MovieLens1 and Netflix2

datasets, which contain a large portion of same movies, thereby forming an item-level relevance scenario, as depicted
in Figure 1. According to IMDB information more than 6000 movies are the same across MovieLens and Netflix datasets.
Regarding user numbers, the Netflix dataset includes over 2, 000, 000 users, while the MovieLens dataset encompasses
more than 150, 000 users.

User-level relevance CDR scenario - Datasets: Concerning the CDR scenario with the shared users, we employed
the Douban dataset [27], where users provide ratings to different items such as movies, books and music, thus forming
a natural user-level relevance scenario, as depicted in Figure 2.

5.2 Experimental Setup

Experimental Setting:
Regarding the item-level relevance CSR scenario for completeness purposes, first we took the MovieLens as

source domain and Netflix as target domain and then we used the Netflix as source domain and the MovieLens as

1https://grouplens.org/datasets/movielens/
2https://www.kaggle.com/netflix-inc/netflix-prize-data

16



833

834

835

836

837

838

839

840

841

842

843

844

845

846

847

848

849

850

851

852

853

854

855

856

857

858

859

860

861

862

863

864

865

866

867

868

869

870

871

872

873

874

875

876

877

878

879

880

881

882

883

884

A cross-domain recommender system using deep coupled autoencoders Conference acronym ’XX, June 03–05, 2018, Woodstock, NY

Table 2. Statistics of the four Data Subsets derived from the Movielens and Netflix datasets.

Data subsets Domains #Common Movies #Users Sparsity

No. 1 MovieLens 5819 40000 97.22%
Netflix 5819 40000 94.80%

No. 2 MovieLens 5986 48575 98.17%
Netflix 5986 49681 97.02%

No. 3 MovieLens 6000 30100 99.35%
Netflix 6000 30040 98.99%

No. 4 MovieLens 4200 44830 99.99%
Netflix 4200 43765 99.86%

Table 3. Statistics of the Douban Datasets.

Data subsets Domains #Common Users #Items Sparsity

No. 1 Douban Book 2120 8659 99.41%
Douban Movie 2120 16584 98.20%

No. 2 Douban Music 1580 6888 99.45%
Douban Book 1580 7545 99.50%

target domain. Taking into account the huge number of users in both domains (i.e., more than 2.000.000 users in Netflix
and more than 150.000 users in MovieLens platform), we followed the same strategy as in [9, 49] and we randomly
sub-sampled a certain number of users in the MovieLens and Netflix dataset, ensuring that the selected users had at
least 5 interactions with the considered movies in the domain that belong. In order to examine the effect of different
sparsity levels of the rating matrices, we repeated the above procedure four times, selecting randomly different users
with varying number of interactions. Hence, we ended up with four data subsets (i.e., No 1, No 2, No.3, No. 4) where the
sparsity level increase from data subset No. 1 to data subset No. 4. Table 2 provides the detailed statistics of the four
resulting data subsets in which the number of the common movies, the number of the selected users and the sparsity of
the rating matrices are listed.

Regarding the user-level relevance CDR scenario, first we took the book as source domain and the movie as
target domain and then we employed the music as source domain and the book as target domain. The datasets are
shown in Table 3.

Training and Testing Setting: Item-level scenario: In our extensive experiments the four data subsets presented
in Table 2 were randomly divided into the training set (80%) and the testing set (20%). In more detail, the 80% of the
common movies was used during the training phase and the rest 20% was used during the testing. Regarding the
testing set, we removed all the rating information from the movies in the target domain. The testing movies from the
source domain were employed in order to transfer valuable information to the target domain. Furthermore, taking into
account that different training and testing sets may affect the recommendation performance, this splitting procedure
was repeated 10 times and the average results were reported. Finally, it should be noted that we normalized the scale of
ratings between 0 and 1 following the same strategy as in [18]. User-level scenario: Similar procedure was employed.
80% of the common users was used during the training phase and the rest 20% was used during testing.
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Parameter Settings: The parameters of our proposed methods are determined to be ideal via exploration of the
parameter space. We explicitly followed a rigorous validation process to determine the best hyperparameters. For
the first random split, a small subset (approximately 10%) of the training data was reserved as a validation set. We
conducted hyperparameter tuning based on performance on this validation subset. Once the optimal hyperparameters
were selected, they were fixed and used across all subsequent randomized splits. In those splits, the model was trained
on the entire 80% training set (without withholding validation data) and evaluated on the independent 20% test set.

For CACDR the sizes of the autoencoders layers were set to {256, 128, 64, 64, 128, 256} and the batch size was 32.
Regarding the training of the CACDR method for the initialization stage the number of epochs is 250, the learning
rate was set to 10−3 and the 𝑙-2 regularizer term was 10−5. Accordingly, for the coupled learning stage the number of
epochs was set to 300, the learning rate and regularization term was 10−5.

For LFACDR the sizes of the autoencoders layers were set to {512, 256, 128, 128, 256, 512} and the batch size was
500. Furthermore, for the initialization training stage the number of epochs was set to 250, while the learning rate
and the regularizer term were 10−3 and 10−5, respectively. Additionally, for the coupled training stage the number of
epochs was set to 300 and the learning rate was 10−5, while the regularizer term remained constant. Finally, the Adam
optimizer was employed to train the proposed models and the ReLU was used as activation function.

Mapping function: Regarding the Non Linear Mapping function, this transfer mechanism we employed a simple
architecture based on a Multiplayer Perceptron (MLP). The sizes of the MLP layers are set to 64, 128.

Loss function and Evaluation metrics: Concerning the loss function, in this study we employed the Masked Root
Mean Squared Error loss following the approach from [15], since the zero values should be ignored during the training
stage of the proposed models.

Compared methods: To showcase the added value of the proposed methods (CACDR and LFACDR), we compared
with the following CDR frameworks:

⋄ DOML[19]: This model combines dual learning with metric learning. Using a pretrained autoencoder, DOML
generates user and item embeddings and learns an orthogonal mapping to minimize the distance between
overlapping user embeddings across domains.

⋄ PTUPCDR[54]: This method utilizes a meta mapping network as a personalized bridge function within the
EMCDR framework [27].

⋄ ACDR-GAN[17]: This model employs adversarial learning to capture both global user preferences and domain-
specific preferences across different domains.

⋄ DDTCDR[18]: It is a recent state-of-the-art CDR model. In more details, DDTCDR exploits the merits of the
dual transfer learning and the feature embedding method to transfer knowledge across domains. Furthermore it
employs an orthogonal mapping to preserve user relations in latent space.

⋄ DARec[41]: This state-of-the-art framework employs a deep domain adaption model to extract and transfer
patterns from rating matrices in different domains, without considering any auxiliary information.

⋄ EMCDR[27]: This CDR framework utilizes a matrix factorization methodology to learn the latent factors and
then a multi-layer perceptron is used to model the mapping function between the latent factors of the source
and the target domain. This method provides four frameworks and we chose the two best ones, namely the
MF_EMCDR_MLP employing MF (matrix factorization) as its latent factor modeling and the BPR_EMCDR_MLP
employing BPR (bayesian personalized ranking) as its latent factor modeling.
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⋄ CST[32]: It compacts the sparsity problem and enhances the recommendation performance by transferring the
latent factors obtained from the source domain into the target domain. The model employs matrix factorization
to deduce the user and item-latent factors in the source domain, and transfer them into the target domain via a
regularization method.

⋄ LFM[1]: It uses a collective matrix factorization method exploiting correlated information across domains via
Localized factor models. Each user and item has a global latent factor common across domains.

The source code of our methods is available in this link3.

5.3 Performance Evaluation - Item-level and User-level relevance scenario

Table 4 and Table 5 summarize the average item-level relevance CSR performance results in terms of RMSE and MAE
for the four examined data subsets presented in Table 2. Additionally, Table 6 summarizes the user-level relevance
recommendation performance results (i.e., common users across the source and target domain) for the examined datasets
given in Table 3 using firstly the Book domain as source domain and the Movie domain as target domain and next using
the Music domain as source domain and the Book domain as target domain. It is evident that the proposed coupled
autoencoder-based frameworks, (i.e., CACDR and LFACDR) gave better results than the other CDR methods for both the
item-level and user-level relevance recommendation scenarios. Moreover, it is noteworthy that both proposed methods
(and especially the LFACDR method) were able to maintain low RMSE and MAE values for different sparsity values of
the datasets compared to the other baseline models, where their performance degraded for high levels of sparsity level.

Comparison against shallow learning approaches.The proposed models significantly outperform the CST, LFM
and EMCDR approaches. In more detail, the above approaches utilize matrix factorization techniques to obtain the
latent factor models, thus these methods can only capture rather shallow and linear characteristics from the datasets
compared to our models that employ deep coupled autoencoders allowing them to capture more complex and non-linear
features from the collaborative relationships of the users and items. Furthermore, another major difference between the
proposed models and the EMCDR methods is that, the EMCDR approaches learn the latent factors separately from the
mapping function. However, this procedure is sub-optimal, since there is no influence between the domains during the
learning of the latent factors. On the other hand, the proposed models, utilize the coupled autoencoders to extract the
latent representations and transfer valuable information across the domains during the training phase.

Comparison against deep learning approaches. Although the state-of-the-art baselines that is the DDTCDR,
MODL and PTUPCDR methods exhibit good recommendation results, our proposed models performed even better and
that can be attributed to the following reason. The DDTCDR, DaRec, and PTUPCDRmodels employ non-linear functions
to extract the latent factors (autoencoders) the learning of the latent factors of the source and target domain along with
the mapping function are learnt separately. This procedure is sub-optimal, since there is no transfer or coupled learning
the source domain and the target domain and hence no influence from one to another during the training process. In
contrast, our methods utilize a coupled learning framework that jointly optimizes the autoencoders and the mapping
function. This joint optimization ensures that the representations are well-aligned and transfer knowledge effectively
across domains. More details regarding of the impact of coupled learning stage on the recommendation performance of
our models that justifies their superiority is given in Section 6.2. Moreover, although the ACDR-GAN methodology
demonstrates better performance compared to other considered methodologies, our approach produces superior results.
This can be attributed to the instability and complexity inherent in training large GANmodels. By utilizing a simple MLP

3https://drive.google.com/drive/folders/1Z_vxBsYw3GJSqSJ54sLq0CJKEVbQQDfW?usp=sharing
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Table 4. Item-level relevance recommendation performance using the MovieLens dataset as source domain and the Netflix dataset
as target domain. The best baseline values are underlined, and LFACDR’s relative improvement over the best baseline is shown in
parentheses.

Data Subset Metrics CST LFM MF_EMCDR BPR_EMCDR DDTCDR DARec DOML PTUPCDR ACDR-GAN CACDR LFACDR

No. 1 RMSE 0.2399 0.2341 0.2289 0.2214 0.2032 0.1783 0.1787 0.1790 0.1786 0.1772 0.1740 (2.41%)
MAE 0.1877 0.1819 0.1757 0.1744 0.1648 0.1426 0.1371 0.1375 0.1405 0.1385 0.1360 (0.80%)

No. 2 RMSE 0.2314 0.2228 0.2079 0.2018 0.1956 0.1868 0.1811 0.1836 0.1802 0.1738 0.1711 (5.08%)
MAE 0.1813 0.1761 0.1643 0.1617 0.1557 0.1496 0.1426 0.1449 0.1419 0.1356 0.1331 (6.65%)

No. 3 RMSE 0.2578 0.2513 0.2387 0.2324 0.2107 0.2093 0.2087 0.2099 0.2010 0.1980 0.1922 (8.18%)
MAE 0.2181 0.2123 0.1868 0.1849 0.1699 0.1678 0.1679 0.1687 0.1654 0.1560 0.1511 (9.96%)

No. 4 RMSE 0.2687 0.2672 0.2508 0.2478 0.2229 0.2243 0.2198 0.2240 0.2197 0.2154 0.2097 (4.60%)
MAE 0.2324 0.2292 0.2076 0.2042 0.1817 0.1805 0.1779 0.1798 0.1773 0.1698 0.1665 (6.39%)

and coupled autoencoders, our methodologies achieve better recommendation outcomes. The coupling of autoencoders
allows for a simple and computationally efficient mapping function, enhancing the recommendation accuracy. Since the
autoencoders are jointly optimized, the latent representations are aligned, making a simple MLP sufficient to map the
aligned representations between domains. Finally, in Table 7, we compared our approaches with the best-performing
method, specifically the ACDR-GAN approach, using ranking-based metrics. These additional metrics provide a more
complete picture of the performance of our proposed methods. The results show that our approaches, CACDR and
LFACDR, not only outperform the GAN method in terms of RMSE and MAE but also achieve better performance in
ranking-based metrics, such as Precision@5 and Recall@5. Note that the metrics Precision@5 and Recall@5 were
computed following the localized evaluation protocol described in [17], where the top-5 predictions are selected from
the subset of items that each user has actually rated in the test set. This approach, commonly used in matrix completion
literature, allows evaluation within the observed data distribution rather than across the full item catalog.

Comparison CACDR and LFACDR. Focusing on the proposed methods, the LFACDR method exhibits better
results compared to the CACDR method in most cases. This finding is mostly attributed to the fact that the LFACDR
method exploits not only the information of the items but also the information deriving from the users. In CACDR, the
full latent representation of the shared entity (user or item) is learned in the source domain and directly transferred to
the target domain via a coupled mapping function. This method is efficient and captures domain-level alignment but
relies entirely on the transferred representation to predict target interactions, without explicitly modeling the local (non-
shared) entity in the target domain. By contrast, LFACDR improves on this by disentangling the interaction modeling
process: Latent Factor Modeling of Both Users and Items: In LFACDR, instead of transferring a single representation
learned from an autoencoder (as in CACDR), the model explicitly learns latent factor matrices for both users and items
in both source and target domains, using four autoencoders. These factor matrices are derived from a joint constrained
optimization problem (Eq. 10), which enforces both reconstruction fidelity and matrix factorization constraints. This
leads to more structured and informative representations. Decomposition and Local–Global Fusion: Unlike CACDR,
which relies solely on transferring the representation of the shared entity (user or item), LFACDR combines the mapped
latent representation of the shared entity with the locally learned representation of the non-shared entity in the target
domain. For example, in the item-level scenario, the predicted rating is computed as the dot product of the mapped
source item latent factor and the target user latent factor. This combination ensures that both transferred knowledge
and domain-specific patterns are leveraged in the final prediction.
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Table 5. Item-level relevance recommendation performance using the Netflix dataset as source domain and MovieLens dataset
as target domain. Best-performing baselines are underlined. LFACDR or CACDR improvement over the best baseline is shown in
parentheses.

Data Subset Metrics CST LFM MF-EMCDR BPR-EMCDR DDTCDR DARec DOML PTUPCDR ACDR-GAN CACDR LFACDR

No. 1 RMSE 0.2378 0.2233 0.2206 0.2210 0.1998 0.1824 0.1803 0.1801 0.1713 0.1692 0.1683 (0.58%)
MAE 0.1868 0.1807 0.1741 0.1740 0.1589 0.1471 0.1421 0.1418 0.1354 0.1298 0.1289 (0.48%)

No. 2 RMSE 0.2302 0.2208 0.2027 0.2002 0.1943 0.1812 0.1815 0.1813 0.1772 0.1674(5.52%) 0.1692
MAE 0.1806 0.1747 0.1624 0.1604 0.1498 0.1457 0.1434 0.1428 0.1350 0.1282(5.04%) 0.1301

No. 3 RMSE 0.2541 0.2504 0.2333 0.2301 0.2088 0.2000 0.2081 0.2089 0.1998 0.1932 0.1837 ( 8.07%)
MAE 0.2153 0.2114 0.1851 0.1821 0.1644 0.1601 0.1601 0.1607 0.1565 0.1494 0.1418 ( 9.37%)

No. 4 RMSE 0.2654 0.2672 0.2499 0.2464 0.2193 0.2010 0.2071 0.2031 0.2014 0.1993 0.1975 ( 1.93%)
MAE 0.2298 0.2293 0.2067 0.2014 0.1699 0.1652 0.1597 0.1683 0.1549 0.1534 0.1511 ( 2.45%)

Table 6. User-level relevance recommendation performance using the Douban dataset. Best-performing baselines are underlined.
LFACDR improvement over the best baseline is shown in parentheses.

Data Metrics CST LFM MF_EMCDR BPR_EMCDR DDTCDR DARec DOML PTUPCDR ACDR-GAN CACDR LFACDR

Book to Movie RMSE 0.2387 0.2347 0.2286 0.2245 0.1984 0.1888 0.1784 0.1881 0.1680 0.1652 0.1647 (1.96%)
No.5 MAE 0.1967 0.1935 0.1863 0.1824 0.1587 0.1506 0.1478 0.1500 0.1333 0.1299 0.1276 (4.28%)

Music to Book RMSE 0.2573 0.2420 0.2348 0.2311 0.2002 0.1893 0.1778 0.1884 0.1776 0.1751 0.1693 (4.67%)
No.6 MAE 0.2128 0.2014 0.1987 0.1941 0.1597 0.1461 0.1425 0.1458 0.1411 0.1343 0.1313 (6.94%)

Table 7. User-level relevance recommendation performance using the Douban dataset

Data Metrics ACDR-GAN CACDR LFACDR

Book to Movie RMSE 0.1680 0.1652 0.1647
No.5 MAE 0.1333 0.1299 0.1276

Pec@5 0.9708 0.9824 0.9835
Recall@5 0.9967 0.9976 0.9987

Music to Book RMSE 0.1776 0.1751 0.1693
No.6 MAE 0.1411 0.1343 0.1313

Pec@5 0.9696 0.9756 0.9778
Recall@5 0.9953 0.9968 0.9987

6 ABLATION STUDY

6.1 Impact of the mapping function

To demonstrate the impact of the mapping function on the recommendation performance of the proposed methods,
we conducted experiments using both simpler and more complex architectures. Specifically, we employed a simpler
architecture based on a Multilayer Perceptron (MLP) and a more complex one based on a Generative Adversarial
Network (GAN). For the MLP-based mapping function, we used a two-layer architecture. The architecture of our GAN
model includes a Generator and a Discriminator. The Generator is a two-layer fully connected feedforward neural
network with ReLU activation functions. The Discriminator is also a two-layer fully connected feedforward neural
network, utilizing LeakyReLU in the hidden layer and a Sigmoid activation function in the output layer.

As shown in Tables 8 and 9, the proposed methodologies with the GAN-based mapping function generally outper-
formed those with the MLP-based mapping function, although the latter still performed comparably well. Notably, our
GAN architecture is significantly smaller compared to other approaches that utilize GAN models such as ACDR-GAN
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Table 8. The performance of the proposed models utilizing two different mapping functions using the MovieLens dataset as source
domain and the Netflix dataset target domain

Data Metrics CACDR CACDR LFACDR LFACDR
GAN MLP GAN MLP

No. 1 RMSE 0.1760 0.1772 0.1735 0.1740
MAE 0.1375 0.1385 0.1354 0.1360

No. 2 RMSE 0.1728 0.1738 0.1702 0.1711
MAE 0.1351 0.1356 0.1328 0.1331

No. 3 RMSE 0.1946 0.1980 0.1907 0.1922
MAE 0.0152 0.1560 0.1502 0.1511

No. 4 RMSE 0.2108 0.2154 0.2075 0.2097
MAE 0.1657 0.1698 0.1630 0.1665

Table 9. The performance of the proposed models utilizing two different mapping functions (Duban dataset)

Data Metrics CACDR CACDR LFACDR LFACDR
GAN MLP GAN MLP

No.5 RMSE 0.1631 0.1652 0.1620 0.1647
MAE 0.1263 0.1299 0.1234 0.1276

No.6 RMSE 0.1644 0.1751 0.1611 0.1693
MAE 0.1297 0.1343 0.1268 0.1313

method [17]. This can be attributed to two main factors. First, in our case, the GAN models only the intrinsic represen-
tations generated by the coupled autoencoders in a much lower, compact dimensional space, allowing for a simpler
structure. Second, the coupling of autoencoders enhances the efficiency of the GAN, leading to better performance with
less computational overhead. The jointly optimized autoencoders produce aligned latent representations, making a
simple MLP sufficient to map the representations between domains.

6.2 Impact of Coupled learning stage

To demonstrate the impact of the coupled learning on the recommendation performance of the proposed methods,
we conducted some experiments with and without the coupled learning stage during the training procedure of our
methods. According to Table 10 and Table 11 which summarize the results for the item-level (we observed similar results
using the Netflix dataset as source domain and Movielens domain as target domain) and user-level relevance scenario
respectively, the coupled learning notably improves the performance of the proposed methods, thus validating our
claims that the coupled autoencoders are able to capture not only the existing relationships in each domain separately,
but more importantly to model the underlying relationships between the source and target domains.

6.3 Impact of Initialization stage

As mentioned above the proposed methods consist of two main stages, i.e., the Initialization stage and the Coupled
learning stage (see Figures 2 and 3). The initialization stage is a critical component affecting the recommendation
performance of the proposed models. To highlight its importance, we conducted experiments with two training schemes.
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Table 10. The performance of the proposed models with and without Coupled learning stage using the MovieLens dataset as source
domain and the Netflix dataset target domain

Data Metrics CACDR CACDR LFACDR LFACDR
without with without with

No. 1 RMSE 0.1827 0.1772 0.1849 0.1740
MAE 0.1441 0.1385 0.1477 0.1360

No. 2 RMSE 0.1815 0.1738 0.2101 0.1711
MAE 0.1420 0.1356 0.1642 0.1331

No. 3 RMSE 0.2183 0.1980 0.2094 0.1922
MAE 0.1723 0.1560 0.1651 0.1511

No. 4 RMSE 0.2333 0.2154 0.2288 0.2097
MAE 0.1860 0.1698 0.1816 0.1665

Table 11. The performance of the proposed models with and without Coupled learning stage using the Douban Dataset

Data Metrics CACDR CACDR LFACDR LFACDR
without with without with

No.5 RMSE 0.1730 0.1652 0.1728 0.1647
MAE 0.1347 0.1299 0.1342 0.1276

No.6 RMSE 0.1836 0.1751 0.1785 0.1693
MAE 0.1435 0.1343 0.1411 0.1313

During the first scheme, called with Initialization, the two proposed models trained in two stages, the initialization stage
where the involved autoencoders along with the mapping network are trained independently and the coupled learning
stage where the autoencoders and the mapping network are optimized end-to-end. During the second scheme, called
without Initialization, we employed the coupled learning stages of the two proposed methods without the autoencoders
and mapping networks are initialized properly (i.e., without the Initialization stage). Table 12 and Table 13 summarizes
the results. It is evident that the initialization stage plays an important role, improving the performance of our methods.

Considering the vastness of the parameter space of a deep learning model, an inappropriate initialization procedure of
the proposed models may affect their performance. In other words, since the neural networks are non-convex functions
containing a large number of local minima, an improper initialization of the parameters of the models may lead the
optimization process to get stuck on local minima with suboptimal performance. On the other hand, the proposed
two stage training process guarantees that during the initialization stage the models will be initialized with proper
parameters adapted to the statistical distributions of the training data, and during the coupled learning stage, where the
models are optimized end-to-end, these parameters will be preserved allowing the proposed methods to further adapt
to the structure of the data and hence improve the performance.

6.4 Impact of Latent Dimension and Complexity Analysis

The latent dimension constitutes a crucial factor effecting the efficacy of different cross-domain recommendation
models, hence in this experiment the impact of latent dimension 𝑘 on the proposed models is investigated. In more
details, fixing the other parameters of our CDR methods, we examined a broad range of latent dimensions 𝑘 , namely
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Table 12. The performance of the proposed models with and without Initialization stage using the MovieLens dataset as source
domain and the Netflix dataset target domain

Data Metrics CACDR CACDR LFACDR LFACDR
without with without with

No. 1 RMSE 0.1801 0.1772 0.1814 0.1740
MAE 0.1406 0.1385 0.1435 0.1360

No. 2 RMSE 0.1769 0.1738 0.1799 0.1711
MAE 0.1394 0.1356 0.1398 0.1331

No. 3 RMSE 0.2066 0.1980 0.2004 0.1922
MAE 0.1597 0.1560 0.1591 0.1511

No. 4 RMSE 0.2205 0.2154 0.2126 0.2097
MAE 0.1740 0.1698 0.1692 0.1665

Table 13. The performance of the proposed models with and without Initialization stage using the Douban dataset

Data Metrics CACDR CACDR LFACDR LFACDR
without with without with

No.5 RMSE 0.1725 0.1652 0.1746 0.1647
MAE 0.1341 0.1299 0.1357 0.1276

No.6 RMSE 0.1812 0.1751 0.1799 0.1693
MAE 0.1421 0.1343 0.1412 0.1313

8, 32, 64, 128, 256. Table 15 summarizes the results. The best results for the CACDR and LFACDR occurred when
the latent dimension was set to 64 and 128 respectively. It should be mentioned that the LFACDR method exhibited
better performance compared to the CACDR method in most cases. This finding is mostly attributed to the fact that
the LFACDR method exploits not only the information of the items but also the information deriving from the users.
Additionally, from table 15 we can deduce that the performance of the proposed models was only slightly affected by
the change of the latent dimension, thus indicating their robustness. Similar results, we observed using the Douban
dataset, exploring the user-level relevance scenario.

Complexity analysis for the proposed methods and the other compared recommendation approaches is summarized
in Table 14. To simplify the analysis, only the main steps of each approach are considered, where the 𝑛 denote the
number of users,𝑚 represents the number of items, 𝑘 denotes the latent dimension, 𝐿 is the number of the layers of the
neural network, and 𝑇 stands for the number of iterations.

7 CONCLUSIONS

We have explored an item-level relevance CSR task where the source and the target domain contain common items
without sharing any additional information regarding the users’ behavior, and thus avoiding the leak of user privacy.
Additionally, we examined a user-level relevance CDR scenario where the two related domains contain common users.
We proposed two novel coupled autoencoder-based deep learning methods for CDR that are able to represent the items
in the source and target domains along with their coupled mapping function to model the non-linear relationships
between these representations. The second method seeks to model the user and item-latent factors, while the first one
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Table 14. Complexity analysis of the proposed methods and the compared baselines .

Methods Computational Complexity

CACDR O(𝑛 ∗ 𝐿 ∗ 𝑘 ∗𝑇 )
LFACDR O((𝑛 +𝑚) ∗ 𝐿 ∗ 𝑘 ∗𝑇 )
DARec O((𝑛 +𝑚) ∗ 𝐿 ∗ 𝑘 ∗𝑇 )
DDTCDR O((𝑛 +𝑚) ∗ 𝐿 ∗ 𝑘 ∗𝑇 )
EMCDR O((𝑛 +𝑚) ∗ 𝑘 ∗𝑇 )
CST O((𝑛 +𝑚) ∗ 𝑘 ∗𝑇 )
LFM O((𝑛 +𝑚) ∗ 𝑘 ∗𝑇 )

Table 15. The impact of different latent dimensions on Recommendation performance of the proposed models using the Movielens as
source domain and the Netflix as target domain

Latent Dimension k = 8 k=32 k=64 k=128 k=256
RMSE MAE RMSE MAE RMSE MAE RMSE MAE RMSE MAE

CACDR 0.1784 0.1391 0.1781 0.1389 0.1738 0.1356 0.1792 0.1400 0.1806 0.1413
LFACDR 0.1747 0.1367 0.1739 0.1359 0.1733 0.1354 0.1711 0.1331 0.1742 0.1361

does not make this assumption. We demonstrated some very promising results, in comparison to some popular methods
on cross-domain recommendation. We used portions of the MovieLens, Netflix and Douban datasets with different
sparsity levels and quantified the effect on our results. We also demonstrated the effect of learning the mapping function
from one domain to the other, which turns out to be a significant part of the proposed method.

The limitations of the proposed approach can be summarized in the following:

• Privacy and Regulation: Coupling inherently requires joint optimization involving data from both domains,
which could raise privacy and regulatory concerns, especially in federated or multi-organization scenarios.

• Incomplete Overlap: Our current evaluation explicitly focuses on complete overlap scenarios. While coupling
can be theoretically extended to partial overlaps, it introduces additional complexity in alignment and may
require careful handling.

• Computational Complexity: Coupling via fine-tuning and joint training can increase computational complexity,
as it requires simultaneous optimization of multiple networks.

We aim to further investigate these issues in our future research.
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