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Abstract. In this study, we propose a novel deep learning method for
cross-domain recommendations that effectively combines attention mech-
anisms, autoencoders, and multitask learning. Our approach leverages
multiple datasets from diverse domains and incorporates domain-specific
encoders, a shared self-attention mechanism, and a multilayer perceptron
(MLP) to capture both intra-domain and inter-domain relationships. By
jointly modeling these interactions, we improve recommendation accu-
racy across domains. Experimental results using the MovieLens dataset
demonstrate that our proposed cross-domain recommendation system
outperforms traditional approaches including matrix factorization, stan-
dard MLPs, and self-attention-based baselines.
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1 Introduction to cross-domain recommendation systems

The growing volume of online content has intensified the need for effective
recommendation systems, particularly in scenarios involving cross-domain rec-
ommendations. While traditional recommender systems typically operate within
a single domain (e.g., recommending books, movies, or music separately), users
often exhibit preferences that may span multiple domains. Addressing that re-
quires cross-domain recommendation techniques capable of transferring knowl-
edge and making accurate predictions across distinct content areas.

Recommender systems typically use collaborative filtering and content-based
methods to predict user-item interactions. However, these methods suffer from
challenges such as data sparsity and cold-start problems [3, 8, 18]. Recent re-
search has focused on leveraging deep learning approaches, including autoen-
coders, attention mechanisms, and multitask learning, to overcome these limita-
tions [7, 6, 10]. In particular, attention mechanisms help capture complex depen-
dencies between users and items, while autoencoders provide a compact latent
representation of user behavior. Multitask learning, on the other hand, allows
shared knowledge across domains, leading to more robust recommendations.

Cross-domain collaborative filtering [9] transfers data from source domains
to target domains for more accurate predictions. For example, a user’s movie
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genre preferences might be inferred from their book preferences. It can also cre-
ate cross-category recommendations, like suggesting music similar to a movie’s
soundtrack. While many current recommender systems rely on matrix factoriza-
tion, this method only uncovers shallow, linear attributes. Several deep learning
approaches have been published [22], but they often use one-hot vectors as input,
preventing capture of genuine collaborative interactions between users and items,
while most existing deep learning recommendation techniques are designed ex-
clusively for single-domain recommendations [19].

In this paper, we present a deep learning framework for cross-domain rec-
ommendations that integrates domain-specific autoencoders, a shared attention
mechanism, and a multitask learning strategy to effectively transfer knowledge
across domains. We validate our approach using the MovieLens dataset and show
that it significantly improves performance.

2 Background on Cross-Domain Recommendations

Cross-domain recommendation systems have been widely applied in vari-
ous domains, such as e-commerce, social media, and digital entertainment. In
e-commerce cross-domain recommendation systems can be used to recommend
products to customers based on their browsing history and purchase history
across different categories [14]. In social media, cross-domain recommendation
systems can be used to recommend content to users based on their activity across
different platforms [20]. In the entertainment industry, cross-domain recommen-
dation systems can be used to recommend movies or TV shows to users based
on their listening and watching history [2].

The concept of domain can be defined at four levels based on the attributes
and types of recommended items [3]:

– At the attribute level, items with different attribute values such as different
movie genres are considered as belonging to distinct domains.

– At the type level, items with different attribute subsets such as movies and
TV shows are considered as belonging to different domains.

– At the item level, items that differ in most or all of their attributes such as
movies and books belong to different domains.

– At the system level, recommended items from different recommendation sys-
tems such as MovieLens and Netflix are considered as different domains.

This classification is used to increase the diversity of recommendations.
One of the main challenges in cross-domain recommendation systems is deal-

ing with the heterogeneity of data across different domains. This can include
differences in the data format, feature representation, and user feedback [4]. To
address this challenge, researchers have proposed various methods for aligning
the data across domains, such as feature mapping and domain adaptation [16].
Other methods focus on learning a shared representation across domains, such
as multi-task learning and transfer learning [4].
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Recent research has focused on developing methods for transfer learning in
cross-domain recommendation systems [4]. This includes techniques such as do-
main adaptation and multi-task learning, which aim to improve the performance
of the system by leveraging knowledge from related domains.

Cross-domain recommendation is a challenging task that aims to make per-
sonalized recommendations to users in a new domain, where little or no informa-
tion about them is available. Various methods have been proposed to tackle this
problem, among which deep learning based approaches have received significant
attention due to their ability to learn complex representations of users and items.
In this context, autoencoder-based methods have been shown to be effective in
learning shared representations across multiple domains. In [21], the authors
present a method for cross-domain recommendation using deep autoencoders to
learn shared representations of users and items across multiple domains. They
evaluate their method on a dataset of movie ratings and show that it outperforms
traditional matrix factorization-based methods.

Meanwhile [21] proposes a transfer learning approach for cross-domain rec-
ommendation using autoencoders. The authors pre-train the autoencoder on a
source domain and fine-tune it on a target domain, showing that this approach
can improve recommendation performance compared to training the autoen-
coder from scratch on the target domain. [11] presents a deep cross-domain rec-
ommendation method that uses a combination of deep autoencoders and neural
networks to learn shared representations of users and items across multiple do-
mains. The authors evaluate their method on a dataset of music ratings and
show that it outperforms traditional matrix factorization-based methods as well
as a baseline autoencoder-based method. [5] proposes a new architecture that
couples the autoencoders of the source and target domains and show that this
approach can improve recommendation performance compared to other cross-
domain recommendation methods using autoencoders.

It is possible to utilize both domain-invariant and domain-specific informa-
tion to make recommendations [12]. The authors show that such a method
outperforms traditional matrix factorization-based methods, as well as other
autoencoder-based methods. [22] proposes an autoencoder framework with an
attention mechanism (AAM) for cross-domain recommendation. The method in-
volves extracting user and item features from original rating matrices of different
domains using an autoencoder, which are then fed into a multilayer perceptron
(MLP) to learn user and item-latent factor vectors. These vectors are then fused
into one final user-latent factor vector using an attention mechanism, and the
predicted rating is obtained from the user and item-latent factor vectors. This
is the method that we build upon.

Building on this body of work, our proposed method integrates autoencoders,
attention layers, and a multitask learning framework to jointly model domain-
specific and cross-domain user preferences. This architecture allows the system to
better generalize across domains while preserving domain-unique characteristics.
More specifically our contributions include:
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– the introduction of a novel attention-based for cross-domain recommendation
that transfers knowledge among different domains;

– the experimental comparison to some popular cross-domain recommendation
algorithms.

The notations that we use are summarized in Table 1.

Table 1: Mathematical Notations for the source domain. Similar notations apply
to the target domain, by replacing the superscript "s" with "t".
Symbol Description
n The number of users of the source and target domain
m The number of movies of the source and target domain

Source
i ∈ N Number of source domains
si Source domain i
Rs,∈ Rn×m The rating matrix of the source domain
R̂

s ∈ Rn×m The predicted rating matrix of the source
Us ∈ Rn×m The user rating matrix of the source domain
Ms ∈ Rm×n The movie rating matrix of the source domain
Xs

e ∈ Rn×k The output of the encoder of Us

Û
s ∈ Rn×m The output of the decoder of Xs

e

Y s
d ∈ Rm×k The output of the encoder of Ms

M̂
s ∈ Rm×n The output of the decoder of Y s

e

3 Related Methodologies on Cross-Domain
Recommendations

3.1 Baseline: cross-domain Matrix Factorization

The users in the source domain are typically represented by the rating matrix
Rs. A user’s rating information is captured in each row of the rating matrix. For
movies representation in the source domain we use the movies rating matrix M s

(transpose of Rs). We can obtain latent representations for users and movies by
using autoencoders in the source and target domains.

For cross-domain recommendation, we can use matrix factorization, e.g., [14,
8] to factorize the output of the user encoder in one domain and the output
of the movie encoder in the other domain, where the latent space k represents
a shared space between the two domains. By using this shared space, we can
recommend movies to users in one domain based on the ratings of users in the
other domain. For multiple source domains, e.g., for three source domains as in
our case study, we initially concatenate all three source domains using shared
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users for this method. We train the movie encoder of the target domain and
the user encoder of the combined source domain after generating the merged
domain. The latent factor vectors of the encoders are then multiplied to predict
the target domain rating matrix R̂t:

R̂t ≈ Xs
e · Y t

e (1)

where Xs
e is the output of the users encoder of source domain, Y t

e is the output
of the movies encoder of target domain. For the combined Source Domain the
user rating matrix Rs ∈ Rn×m̂, where m̂ = ms1 + ms2 + ms3 and msi is the
number of movies in source domain i. The architecture is illustrated in figure 1.

Fig. 1: Matrix Factorization for the three source domains and one target domain.

3.2 Shared Self-Attention for user representation across domains

In order to capture the correlation between the latent features of users across
all source domains, we propose to create a fused latent factor matrix as presented
in [22]. However, in our case, we need to extend this mechanism to cover all the
source domains at the same time. Specifically, we apply the self-attention mech-
anism across all source domains to generate a new representation that captures
the interactions between users in each source domain, and then fuse these rep-
resentations to obtain a joint representation of all users across all domains.

The self-attention mechanism computes the attention weights at
u, for each

user u across several domains in relation with t-domain, as in (2), followed by a
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normalization step, such as the Softmax function:

W u(p, q) = Xp
u,: · (Xq

u,:)
T

ap
u =

S∑
q=1

exp(W u(p, q))∑S
j=1 exp(W u(p, j))

Xq
u

(2)

where the ap
u ∈ R1×k is the latent representation of the user u in the p domain.

Given that, the user latent representation in all domains can be represented by
the sum:

ui =

S∑
s=1

as
i (3)

We are using the output in matrix factorization technique, which has proven
to be an effective technique for personalized recommendation systems [14]. The
following equation applies:

R̂
t
≈ Xs

e(Y
t
e)

T (4)

where Xs
e is the output of the self-attention mechanism across all domains, Y t

e

is the output of the movies encoder of target domain and R̂t the approximation
of target domain’s rating matrix. This architecture system is in accordance to
[22] for single head attention and is illustrated in figure 2.

Fig. 2: Self-Attention Mechanism for three source domains and one target do-
main.
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4 Deep Learning Framework for Cross-Domain
Recommendations

4.1 Self-Attention Mechanism and MLP

In this study, we try another approach for cross-domain recommendation
using deep learning. We utilize self-attention mechanisms from the output of
trained encoders as input for a multi-layer perceptron (MLP). This allows for
better representation and weighting of the encoded features, resulting in more
accurate and personalized recommendations. For example, let’s consider a user
represented by a vector Ui that contains information about the user’s prefer-
ences, and a movie represented by a vector Mi that contains information about
the movie’s ratings from all the users for the domain si. The self-attention mech-
anism would then compute the attention weights a as the dot product between
the input representations and a parameterized weight matrix W , followed by a
normalization step, such as a Softmax function (Fig. 2).

The final self-attention output is then computed as a sum of the represen-
tations of each user, as follows: A = [uT

1 u
T
2 . . .uT

n ]
T , where n is the number of

users and A ∈ Rn×k.
The user representation A is then passed as input to an MLP, which consists

of several layers of neurons, each layer applies a linear transformation to the
input, followed by a non-linear activation function. For example, a simple MLP
architecture with L hidden layers can be represented as:

Xt
e1 = σ(W 1 ·A+B1)

...

X̂t
e = σ(WL ·Xs

eL−1
+BL)

(5)

where W 1, ...,WL, and B1, ...,BL are the encoder’s weight and bias matrices,
L is the number of hidden layers, X̂t

e is the target domain’s calculated intrinsic
representation, and σ is the activation function (e.g., ReLU). The architecture
is presented in figure 3.

4.2 Self-Attention Mechanism and MLP with Coupled Training

In this architecture, we use a multi-task learning framework that consists of
domain-specific encoders, a shared self-attention mechanism, and an MLP. The
domain-specific encoders are responsible for extracting domain-specific features
from the input data, while the shared self-attention mechanism is used to capture
the relationships between the features within each domain. The outputs of the
self-attention mechanism are then merged and passed through an MLP for final
prediction.

The difference with the previous one is that it allows the model to learn
both the domain-specific and cross-domain relationships, while also capturing
the unique characteristics and preferences of each domain. By using a multi-task
learning framework, the model can leverage the knowledge learned from different
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Fig. 3: Self-Attention Mechanism and MLP for three source domains and one
target domain.
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domains to improve the performance of each domain. The multiple tasks refer
to predicting the ratings of movies for each source domain, as well as predicting
the ratings for the target domain. Each domain is considered a separate task,
and the model must simultaneously learn to perform well on all tasks in order
to provide accurate recommendations across all domains. This approach allows
the model to jointly optimize the encoders and the MLP, resulting in better
performance in terms of MAE. In order to achieve this we are using a coupled
training optimizer that updates the parameters of the encoders and MLP jointly,
we can define the loss function (L) as follows:

L =
1

N

N∑
i=1

(ŷi − yi)
2 + λ1

D∑
d=1

∥θd∥22 + λ2∥θout∥22 (6)

where N is the total number of user-movie pairs across all domains, ŷi is the
predicted rating for the i-th user-movie pair, yi is the true rating for the i-
th user-movie pair, λ1 and λ2 are regularization hyperparameters, θd are the
parameters of the encoder for domain d, and θout are the parameters of the
output MLP.

To train the model using a coupled optimizer, we can use stochastic gradient
descent (SGD) or a variant such as Adam. We can compute the gradient of the
loss function with respect to the parameters of the encoders and the output MLP
jointly using backpropagation. The update rules for the optimizer are given in
figure 4.

Fig. 4: Update rule for the encoder parameters (left column) and for the MLP
(right column).

In these equations, m(t)
d and v

(t)
d are the first and second moment estimates

for the gradient of the loss with respect to the encoder parameters θd at iteration
t, and m

(t)
out and v

(t)
out are the first and second moment estimates for the gradient

of the loss with respect to the output MLP parameters θout at iteration t. The
hyperparameters β1 and β2 control the decay rates for the first and second
moments, respectively, and ϵ is a small constant to prevent division by zero. The
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hat notation denotes bias-corrected estimates of the moments, which are used
to adjust the step size for the updates.

Fig. 5: Self-Attention Mechanism-MLP Coupled Training with three source do-
mains and one target domain.

5 Experimental Results on MovieLens Dataset

We use the MovieLens 20M dataset, which is a collection of movie ratings pro-
vided by users on the MovieLens website. It is generated by GroupLens Research,
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containing 138493 users, 27278 movies, and 20000263 ratings from MovieLens.
We have selected this dataset because (a) it is used as a benchmark dataset for
various recommendation system approaches in papers e.g., [13, 14, 22], which may
facilitate comparisons, (b) it contains a large amount of movie ratings and di-
verse user-item interactions, providing a realistic representation of the challenges
faced by real-world recommendation systems, (c) it contains different movie gen-
res that can be used for cross-domain recommendations and (d) is sparse and
thus challenging. We kept the users with a user Id up to 20,000. This resulted
in the domains being of a sufficient size while maintaining a sparsity level of
approximately 99%.

Domain Training Set Sparsity Test Set Sparsity Splitting
Comedy 99.06% 99.07% 60/40
Drama 99.30% 99.30% 60/40
Action 97.99% 98.01% 60/40
Thrilling 97.98% 98.08% 60/40
Table 2: Sparsity and splitting table for the domains.

We divided the dataset into four domains based on movie genre: action,
drama, thriller, and comedy comprising 1215, 1215, 7246 and 5981 movies re-
spectively (see Table 2). These domains possess a common user base of 9,778
individuals. We sought to predict the user ratings for the comedy domain while
using the other three domains.

Nr Method RMSE MAE
1 Cross-Domain Matrix Factorization (Fig. 1) 0.8317 0.7968
2 Cross-Domain Self-Attention [22] (Fig. 2) 0.5499 0.2609
3 Cross-Domain Self-Attention with MLP (Fig. 3) 0.5629 0.1557
4 Cross-Domain Self-Attention-MLP with Coupled Training (Fig. 5) 0.4985 0.1092

Table 3: Experimental comparison of the presented methods in terms of RMSE
and MAE errors.

We have used the pytorch library for our implementation. The encoder-
decoder architecture used employ two linear layers of 128 nodes each, leading
to a latent vector of size 64. Leaky ReLU was used as activation function. The
same two-layer architecture was used for the MLP.

The performance of the four presented methods was evaluated using two met-
rics, Root Mean Square Error (RMSE) and Mean Absolute Error (MAE). The
results of the evaluation for RMSE and MAE are presented in the table below
(Fig. 3). The Mean Absolute Error (MAE) is considered to be an important
evaluation metric in movie recommendation systems as it provides a more ro-
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bust evaluation of the recommendation performance. Unlike Root Mean Square
Error (RMSE), MAE measures the absolute differences between the predicted
ratings and the ground truth, making it more insensitive to outliers [17]. This
is especially important in movie recommendation systems, as the ratings are
usually on a scale of 1 to 5 and a small absolute error may have a large relative
impact on the overall prediction performance [15]. Additionally, MAE is more
interpretable and easier to understand for users compared to RMSE, making it
a preferred choice for evaluating the recommendation performance in real-world
applications [1].

Method 2 clearly outperforms the method 1, which underlines the superiority
of attention-based methods in comparison to matrix factorization. The latter is
able to capture linear dependencies and probably that is the reason for the dif-
ferences that we noticed in performance. Method 3 has similar RMSE to Method
2 with a value of 0.5629, and significantly better MAE. The added component
of the MLP that maps user representations from the source to the target ap-
pears to offer added value. The method 5 clearly demonstrates significantly lower
RMSE and MAE errors (0.4985, 0.1092) in comparison to methods 2,3. This is
a clear indication of the benefits of multitask learning. Indeed, the addition of
the coupled learning between domains offers serious reduction of the prediction
error.

6 Conclusion and Future Directions in Cross-Domain
Recommendation Research

We have proposed a method that integrates domain-specific encoders, a
shared self-attention mechanism, and an MLP to capture both domain-specific
and cross-domain relationships, improving recommendation accuracy. We pre-
sented our method and showcase that it outperforms methods based on matrix
factorization, MLP, and self-attention in the cross-domain scenario. The pro-
posed method was validated on the MovieLens dataset and the experimental
results indicate that it outperforms purely cross-domain factorization and self-
attention methods.

In the near future we are going to extend the method with multi-head atten-
tion. Extending the current single-head attention to a multi-head variant could
help the model attend to different types of domain-specific relationships and
improve representation learning across diverse content types. Future research
could also integrate item and user metadata (e.g., demographics, tags, textual
reviews) to enhance autoencoder inputs, improving performance especially in
sparse or cold-start scenarios. Using domain-adversarial training could ensure
domain-invariant feature extraction while preserving discriminative properties,
potentially improving generalization in low-data target domains. Expanding the
evaluation beyond MovieLens would validate the model’s effectiveness across di-
verse recommendation tasks. Furthermore, we aim to apply the proposed transfer
learning methods to other domains such as tasks combining vision and text (e.g.,
medicine, precision agriculture etc.).
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