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• Unique dataset of multispectral images of Tuta absoluta and Leveillula
Taurica, in real greenhouse environment.

• Dataset is publicly available.

• Disease detection (localization and classification) with Faster-RCNN.
Two Faster-RCNN architectures: one for RGB images and one for six-
channel images (RGB, 850nm, 980nm, segmented NDVI)

• Foreground segmentation using NDVI and 630 nm, with Normalized
Correlation Coefficient maximization, for non deterministic image thresh-
olding.
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Abstract

Tomato (Solanum lycopersicum) is one of the most important vegetables for
human nutrition and its cultivation employs amounts of resources worldwide.
However, tomato cultivation is plagued by several diseases and pests that in-
crease production cost and introduce additional environmental and health
risks due to pesticide use. Timely disease and pest detection is of high im-
portance for tomato crop output and the environment, since plant protection
input can be optimized. Here, we present a dataset of multispectral images
(RGB and NIR) of tomato plants, at various stages of infection with Tuta ab-
soluta and Leveillula taurica, which to our knowledge is unique. The dataset
comprised of 263 images collected from a real greenhouse. Additionally, we
applied a baseline Faster-RCNN object detector for the localization and clas-
sification lesions. Our experiments include (i) a version for the RGB channels
and (ii) a custom backbone architecture version for feature fusion using the
same Faster-RCNN head. Lastly, based on the detector’s output, we compute
an > 0.9 F1-score on binary classification, while mAP 18.5% and mAP 20.2%
on detection, highlight the added value of NIR spectral bands for detecting
these diseases.

Keywords: Plant Disease Dataset, Tuta absoluta, Leveillula taurica, Leaf
Miner, Powdery Mildew, Faster-RCNN, Feature fusion.

Introduction

Tomato (Solanum lycopersicum) is a major horticultural crop cultivated
in temperate zones worldwide, with an estimated global production of over
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170 million tons (Mt) [1]. The transboundary expansion of tomato demand
has provided novel opportunities for the agricultural and marketing indus-
tries. However, this globalization of agricultural production has significant
consequences on the globalization of agricultural pests [2]. The development
of the world trade system has resulted in a sharp increase of the number
of pest species invading new regions, causing reduction of vegetable crops
productivity and setting product post-harvest shelf-life at risk [3]. Two such
major nuisances of solanaceous crops are the tomato leaf miner Tuta absoluta
(TA) and the powdery mildew Leveillula taurica (LT), also known as oidium.

TA (Meyrick) (Lepidoptera: Gelechiidae) [4] originates from S. America
and is considered one of the most rapidly expanding and devastating tomato
crop pests due to its high reproductive rate and damage potential, causing
complete and non-refundable destruction of the crop if no proactive measures
are taken [5]. The development cycle of the insect depends on the prevailing
temperatures of the cultivation period. Females of TA lay up to 250 eggs on
the areal part of the plant where young larvae (the worms/offsprings of the
fly that feed on the leaf) start feeding from the canopy of the plant leaving
characteristic irregular lesions in the form of galleries (mines) on the leaves
(Fig. 1) and move to new feeding locations for as long as food is available.
At the beginning of the infestation, 1st and 2nd instar larvae form small
white galleries on the leaves, while in 3rd and 4th larval stages the galleries
expand into new leaves and the symptoms become dark brown and necrotic.
These lesions consist of dark color excrement and extensive infestation can
cause complete necrosis of the leaves and defoliation. If climatic conditions
are favorable, larvae feed almost continuously and generally do not enter
diapause [6]. When an infestation occurs, TA larvae can cause yield losses of
50%–100% [7], therefore control at early stages is imperative.

Powdery mildew is an endoparasite forming both endophytic and epi-
phytic mycelium [8] initially reported in warm arid to semiarid climatic zones
in Asia, the Mediterranean and Africa [9]. In tomato, powdery mildew usu-
ally infects only the mature fully developed leaves and severe infections may
result in considerable damages. The main symptoms are yellow irregular
spots (about 10-15 mm in diameter) on the abaxial side of the leaves (Fig.
1) and on the adaxial surface a thin light brown mycelium is formed due
to the emergence of the conidiophores through the stomata [10, 8]. Several
studies report yield losses of up to 40% in greenhouse and field tomatoes
[11]. Desneux et al [12] report that, unless effective control measures are
taken, the disease can cause yield losses of up to 80–100% in tomato crops in
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recently invaded areas and may pose a threat to both greenhouse and open-
field tomato production. Furthermore, disease severity on canopy of the crop
can result in significant degradation of the fruit quality of canning tomatoes
[10].

(a) (b)

Figure 1: (a): Tomato leaf miner 2nd instar larvae feeding from mesophyll cells of tomato
leaves. (b): Yellow spots on the abaxial side of tomato the leaves, at early stages of
powdery mildew infection.

As the incidence of crop diseases and pests is increasing, novel, accurate
and timely methods to identify early symptoms must be employed [13, 14].
Until now, the prevalent method of detecting pests and diseases heavily de-
pends on farmer knowledge and experience, often resulting in late, inaccu-
rate, and ineffective management of the risk. Moreover, despite the intensive
research for alternative risk management methods against pest and plant dis-
eases, the conventional method of handling the problem using chemical plant
protection products is the most common strategy employed in the Mediter-
ranean cultivational region until today [15, 16]. Unfortunately, if pathogens
and pests are well established in the cultivation, pesticide and fungicide ef-
ficacy might be compromised as well as contribute to the development of
resistance in a wide range of antifungal and insecticidal compounds [17, 18].
For this reason, insecticide and fungicide applications are often preventive,
thus introducing an additional fixed cost that amounts to over 15% of the op-
erating cost [19], without accounting for the associated labor, environment,
and health hazard costs.
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The evolution of machine learning - based vision methods (e.g., [20, 21,
22]), along with the commercial availability of RGB and multispectral vision
sensors (e.g., [23], [24]) facilitate the development and deployment of auto-
mated systems for disease detection. Such systems may be used to modernize
greenhouse cultivation, by reducing dependence on labour and agrochemicals.
They can potentially allow the individualized management of the plants, as
opposed to the current practice of indiscriminate plantation-wide interven-
tions, which leads to resource wastage and often excessive use of agrochemi-
cals. In addition, they can reduce the need for human presence and manual
interventions, and allow for round-the-clock operation of the greenhouse.

In this context, we introduce a new publicly available dataset of multi-
spectral images: 3 RGB and 2 Near Infra-Red (NIR) channels, of tomato
plants, at various stage of infection by TA and LT. Additionally, we apply
a system suited for detecting the lesions caused by TA and LT. The system
framework employs a deep object detection architecture. Finally, we run a
baseline model, Faster-RCNN and which has been used in the PASCAL VOC
2007 [25] (73.2% mAP) and 2012 (70.4% mAP) challenges.

Related Work

Object detection

Since lesions created by TA and LT have distinct visible characteristics,
we can consider them as objects which can be located on an image. In
the literature, this problem is called object detection and has been studied
extensively. As described by Wand et al. [26], salient object detection in the
Deep Neural Network (DNN) era starts from Multi Linea Perceptron (MLP)
- based architectures, until recent works, using Fully Convolutional Neural
Networks (FCN).

State of the art frameworks use Region-based CNNs (RCNNs), which
incorporate a Region Proposal Network (RPN), while allowing scale invariant
detections by using Feature Pyramid Networks (FPNs).

A basic setup of an object detector is comprised of a feature extraction
module - in the case of a deep architecture this is a classic deep architecture
like ResNet [27] or VGG [28] that have been proven efficient without the
pre-application of any other heuristic rules. These features are used next
by other modules for tasks like classification, segmentation or salient map
generation, according to the application.
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One of the most prominent FCN frameworks is Faster-RCNN [29]: a
two-stage object detector using an RPN with data driven anchors and a
“head” module responsible for fine tuning and classifying Region of Interest
(RoI) proposals. The use of the RPN escapes the time consuming process
of Selective Search [30] used in preceding works like RCNN [31] and Fast-
RCNN [32]. The main difference can be found at testing time, where a
CNN feedforward procedure is less laborious than the process of forming
homogeneous regions with Selective Search.

R-FCN [33] is in principal the same as Faster-RCNN with the only dif-
ference that it has score maps to evaluate the proposed RoIs. SSD [34] is
a single stage object detector which uses multiple convolutional layers for
multiple scales scales. The same holds for the Yolo framework, for which
multiple models have been published: Yolo9000 [35], Yolov3 [36] and Yolov4
[37], focusing or real time object detection. Another single-stage detector,
RetinaNet 2018 [38], is similar in structure to Faster-RCNN, but feature
maps are produced by Nearest Neighbors sampling, rather than using an
RPN. Lastly, CornerNet [39] and RepPoints [40] try a different representa-
tion for ground truth regions, using points instead of bounding boxes. Also,
FCOS [41] propose a one-stage fully convolutional detector which avoids the
use of an RPN. DeNet [42] also uses corners to base its RoI proposals.

Deep learning for the detection of plant diseases and pests

Recent research studies propose novel detection methods based on deep
neural networks and object detection models to tackle the challenge of early
detection of the plant pest and disease symptoms [43]. Raza et al. [44] have
demonstrated data collection through Electronic Nose (EN) coupled with NN
techniques for analysis and classification of infected (powdery mildew) and
healthy tomato crops with a maximum of 98% accuracy. Moreover, Xu et al.
[45] investigated the application of NIR Spectroscopy by exploiting the leaf
reflectance properties for detection of the leaf miner pest on tomato leaves and
analyzed reflectance at different wavelengths that could differentiate infection
stages. The wavelengths with maximum correlation coefficient were found to
be 1450 nm and 1900 nm. Recently, the research project “SOUP: SOilless
culture Upgrade” aims to automate the monitoring of plant growth through
sensor networks, and to introduce robotic technology for pest management
[46].

Works like [47], [48], [49], [50] and [51] target specifically tomato plants,
providing a dataset on Tuta absoluta under green house conditions. They
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compare pretrained fully convolutional networks to identify the disease present
in the image. The major difference with our dataset is that the labeling is
done upon the whole image and not on the RoI, resulting in a classification,
rather than a detection task. Also each image frames a single leaf at a time,
usually with the leaf facing the camera. In our case, where the whole plant
is framed, leaves can be facing in all directions, changing the patter of the
lesion altogether. This makes the detection task a more complex problem for
the detector to solve.

On the other hand, [52] aim to the localization of the disease in the image.
However, the dataset they use is inconsistent in resolution, coming from
heterogeneous sources, which may account for different spectral response as
well. However, the content of each image is mostly a single leaf. Also,
the annotation they provide is limited to a bounding box, while we provide
bitmap masks which can be used for a more vast range of architectures, such
as Mask-RCNN [53].

To add to our contributions, all of the above datasets are in the visible
spectrum, while our dataset includes not only two infrared channels but also
three channels in the visible spectrum of a more narrow band response. Xu
et al [54] use a similar setup with far-infrared spectral bands (7µm ∼ 12µm
and), but the installation they use for acquiring the images provides only a
top view of the image.

From the above we infer that the attention on plant disease detection
using Deep Learning is evident in literature. The reader is referred to the
survey papers of [55] and [56] for more such works.

Datasets of plant diseases and pests

In literature there is a variety of works studying the detection of plant
diseases in images. Plenty of them employ DNN architectures to achieve
efficient disease detection, while others introduce new datasets to enable fur-
ther research on the topic. Attributes of relevant datasets are the plants
under consideration, the diseases, the captured spectra, the content of the
images and the environment in which it is acquired. To keep things in per-
spective to our contribution, some of the dataset also consider the tomato
plant, while a few use multispectral imaging to detect a disease. For exam-
ple, works like [57, 47, 49, 52, 58, 54, 59] include cases of diseased tomato
plants in their datasets. At the same time, [60, 52, 58, 51] and [59] include
TA and LT on tomato plants, alongside other plant diseases. Furthermore,
[61, 62, 63, 64, 65, 66, 67] and [54] use multispectral (MS), hyperspectral (HS)
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or NIR imaging in the datasets they use. However, NIR may be included in
MS or HS bands. Lastly, only three datasets are publicly available: Plant
Village/Plant Disease [51, 50], Early Crop Weed [48] and Plant Pathology
Apple [65].

A summary of the related datasets and their features are given in Table 1.
It is evident that a public dataset in real greenhouse environment including
NIR channels is missing. Even more so there is no multispectral data in this
context for TA and LT, at all.

Table 1: Datasets and relevant works in literature. Tomato plants, Tuta absoluta, Leveil-
lula taurica and NIR occurrences are in bold. S: spectra, D: dataset (u: undisclosed, p:
public), F: framing (l: leaf, p: plant), E: environment (l: lab, f: field, g: greenhouse).

Ref. Plant:Disease or pest S D F E

[57] tomato: no disease reference RGB u p f

[60] tomato: Leaf miner et al. RGB p p f

[47] tomato: Tuta absoluta RGB u p f

[48] tomato, cotton: Black nightshade, Velvet leaf RGB p p f

[49] tomato: Early Blight, Late Blight, Citrinitas leaf curl, Leaf mold,

Bacterial leaf spot

RGB p p,l l

[52] tomato: Leaf mold, Gray mold, Canker, Plague, Miner, Powdery

mildew, Whitefly, Nutritional excess

RGB u p f

[68] unspecified: Powdery mildew RGB u p f

[58] tomato: Powdery mildew, spotted wild virus RGB u p l

[51, 69,

70, 71]

Cherry: Powdery Mildew; Squash: Healthy, Powdery Mildew;

tomato: Bacterial Spot, etc

RGB p l l

[54] tomato: Tobacco mosaic virus NIR (7-1µm,8-14µm) u p l

[50] tomato: Bacterial spot, etc RGB p l l

[67] wheat: Powdery mildew etc HS (17 bands in

[445nm, 870nm])

u p l

[72] common bean: Powdery mildew; coffee:Leaf miner, etc; cashew

tree: Powdery mildew; kale: Powdery mildew, etc

RGB p l l

[66] unspecified: Theba pisana insect RGB, UV, NIR (700-

1500nm)

u p

[65] apple: Rust, Scab HS(1.6-5.9µm) p p l

[64] cassava: Brown streak MS (15 bands in

[395nm, 880nm])

p l l

[63] cucumber:Powdery mildew MS (430-470nm, 630-

690nm)

u l l

[62] wheat: Crown rot HS(450-497nm) p p l

[73] sugar beet: Leaf spot RGB u p f

[74] rice: Stackburn, Leaf smut, Leaf scald, White tip, Leaf streak;

Maize: Phaeosphaeria spot, Eyespot, Gray leaf spot, Goss’s bacte-

rial wilt

RGB p l l

[61] cucumber:Powdery mildew MS (475, 560, 668,

840, 717nm)

p p g

[59] tomato: Early blight, Late blight, Gray leaf spot, Brown spot,

Coal pollution, Gray mold, Leaf mold, Powdery mildew, Leaf curl,

Mosaic, Leaf miner, Greenhouse whitefly

RGB p p f

Dataset development

Greenhouse setup

Tomato seedlings (Solanum lycopersicum var. Elpida) at the stage of four
true leaves were transplanted in rockwool slabs in an unheated saddle roof
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double-span greenhouse covered with polyethylene film, at the experimental
greenhouse facilities of the Hellenic Mediterranean University, Greece. To
avoid translocation of the pest and fungal disease, plants were grown in
separate insect-proof chambers (12 m2) designed to accommodate six fully
developed tomato plants. To produce an artificial leaf miner infestation, a T.
absoluta colony was initiated from insects collected in from a local commercial
greenhouse and maintained for four weeks in the laboratory (Temperature 25
°C; Relative humidity 75±5%; 12 h Light : 12 h Dark) by feeding on tomato
plants (Solanum lycopersicum var. Elpida). After eight weeks, adult insects
were transferred in two insect-proof chambers of the experimental greenhouse
and infection-free tomato plants (n=12) at the stage of nine fully developed
leaves were colonized with adult insects (3 adults m-2).

To produce an artificial powdery mildew infection, Leveillula taurica (Ery
siphaceae) was isolated from young leaves of tomato plants grown in a local
commercial greenhouse. Conidia, i.e., the spores of the fungus were collected
by intensively washing infected leaves with water. The conidia in the rinse
suspension were counted under a light microscope using a hemocytometer.
For inoculations of tomato leaves, the concentration of conidia in the suspen-
sion was adjusted to 2 104 conidia ml-1. The suspension was sprayed onto
tomato plants (n=12) at the stage of nine true leaves unfolded at a volume
of 5 ml per plant [75]. Inoculated plants were kept in growth chambers for
24 h in plastic cages with 100% relative humidity at 21 °C. Consecutively,
the tomato pants were transferred in two separate insect-proof chambers in
the experimental greenhouse. After treatment, tomato plants were fertigated
daily with a standard nutrient solution calculated after [76] using an IQ60
automatic nutrient mixing system (Alagro, Greece).

Image acquisition

Two weeks after the artificial (L. taurica) inoculation and (T. absoluta)
colonization, multispectral images of the tomato plants were captured every
three days. In this study we used the MUSES9-MS-PL multispectral camera
(Spectricon, Greece), which features 4-6 Megapixels C-MOS @ 25 f/s in the
370-1100 nm spectral range. The camera implementation used here captures
a total of 8 channels per shutter click at a resolution of 1776 by 2368 pixels.
The first 3 channels are acquired with a typical RGB sensor while the rest
are captured via the multi-spectral sensor. Three of the latter channels were
chosen to be at 460 nm (near blue), 540 nm (near green), and 630 nm (near
red), respectively. These wavelengths are typically close to the ones used in

8



the RGB camera, however the response of the multi-spectral sensor is denser
around these frequencies than the response of the RGB camera. The last 2
channels are in the Infra-Red spectral region, at 850 nm and 980 nm. Table 3
shows the width of each band. MUSES9 applications include non destructive
object analysis [77], biomedical optical imaging [78], pigment identification
and mapping in paintings [79], and multispectral microscopy of micro-plastic
pollution [24].

The dataset contains at total of 314 images, labeled by plant, date, symp-
tom and RoI. Within the dataset 179 images show TA symptoms, 103 show
LT symptoms, and 32 show no symptoms Table 2. Since plants were cap-
tured at different development stages, therefore the images depict both the
early and late stages of pest or disease symptoms. In addition, the dataset
is acquired with a total of 5 channels: 460 nm, 540 nm, 630 nm, 850 nm, 980
nm, in comparison to most datasets in the bibliography were acquired solely
with standard RGB cameras. Finally, since images were taken from within
the experimental greenhouse, consistent and realistic environmental condi-
tions are kept throughout the dataset. Image calibration was not performed
under the assumption that a LED light source provided consistent illumi-
nation throughout the dataset. The light source was installed around the
camera lens and the images were taken during the day. The light source is a
circular array of led bulbs emitting in ultraviolet (UV), visible and NIR spec-
tra. Coarsely, there is a monotropic narrow response in UV with a mode at
∼ 375nm, a wider response in the visible spectrum with a mode at ∼ 550nm
and an also wide response in NIR with a mode at ∼ 900nm. The dataset is
openly accessible for future development1. A sample cube can be found in
Figure 2.

Image annotation

Each image was manually annotated by an expert agronomist using the
VGG Image Annotator tool [80]. Each lesion was localized with a bounding
box, and the results were stored in JSON files using the format proposed for
the COCO object detection dataset2. As secondary metadata of the dataset,
each lesion was also labelled based on its level of progression, with 1 denoting
1-5 lesions, 2 denoting to 5-10 lesions, and 3 denoting 10-20 lesions. In cases

1https://drive.google.com/drive/folders/1gzhT03EY5WxxYJT0k8EAsBiahc9lVG-S?

usp=sharing
2https://cocodataset.org/#format-data
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Table 2: Number of samples per lesion type and progression level in the dataset.

Disease progression level TA samples LT samples

0 32 0
1 122 97
2 30 6
3 27 0

Total 211 103

Figure 2: A multispectral cube of the dataset. top: the NIR channels at 850 nm and 980
nm. bottom: channels of the visible spectrum in the wavelength regions of red, green and
blue (see Table 3).

Table 3: Wavelength regions supported by the MUSES9-MS-PL camera and those used
in the current study.

Spectral band Lower limit (nm) Upper limit (nm) Current study (nm) FWHM* (nm)

Infrared 800 1000 980, 850 50
Red 600 700 630 40
Green 500 600 540 30
Blue 400 500 460 30

Ultraviolet 365 385 - -
* FWHM: Full Width at Half Maximum
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Figure 3: Top view (a) and side view of (b) the multispectral image sampling arrangement.
The camera is set at distance d = 1.00 m from the tomato plant. Images were acquired
from three heights (h = 0.75, 1.00, 1.40 m) and two azimuth angles (A = 15°and B =
-15°).

of higher progression, the pest and disease symptoms has surpassed a critical
point where lesion detection, for the purpose of prevention, would have no
interest. Images with no visible symptoms were annotated as level 0.

Automated detection methods

Foreground segmentation

To calculate the Lesion to Healthy Ratio (LHR), we had to segment the
foreground of the image, that consists of green plant biomass. To do so, we
applied a histogram-based thresholding on the NDVI image. The optimal
threshold was selected according to the green channel (540 mn) and the
NDVI image. The Normalized Difference Vegetation Index (NDVI) is vastly
used in the literature [81, 82] for the distinction of yield-related physiological
traits [83], and it is computed as follows:

INDV I =
INIR − IRed

INIR + IRed

where NIR is channel 980 nm and red is channel 630 nm. The threshold
used is not selected arbitrarily, rather it is computed as the argument that
maximized the Normalized Correlation Coefficient (NCC) between channel
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540 nm (I540) and NDVI (INDV I). The NCC between these two images is
defined as the following scalar quantity:

NCC(I540, INDV I) =

H,W∑
i,j=1

[
(I540 − Î540) ◦ (INDV I − ÎNDV I))

σ540 × σNDV I

]
[i,j]

where the ◦ operator is the element-wise Hadamard product, H and W are
the height and width of the images. I540 and INDV I are the thresholded
channel 540 nm and NDVI respective images given a set of thresholds aiming
to isolate the supports of the useful lobes of their histograms. ˆI540 and ˆINDV I

are the mean pixel intensities of the above images. The process is repeated
systematically over various sets of thresholds. The pair yielding the highest
NCC is kept.

The idea behind this procedure is that NDVI alone cannot be system-
atically thresholded with no regularizer being present. This is the point of
introducing channel 540 nm here, to act as a regularizer, since in an ideal sce-
nario it contains the greener parts of the image, most likely leaves. Lastly,
what we refer to as “threshold” is actually a tuple of intensities, meaning
that the histogram was cropped in order to match exactly the lobe of the
histogram corresponding to the leaves. A segmentation example can be seen
in Figure 4.

The advent of accessible multispectral cameras allowed the use of NDVI
at lab scale, with recent applications in tomato canopy [84, 85] and health
assessments [86, 87, 88]. Nevertheless, to our knowledge, NDVI has not
been implemented within a machine learning framework for pest or disease
detection.

(a) RGB image (b) NDVI image (c) Segmented image

Figure 4: NDVI image computed from the 630 nm and 980 nm channels, bottom: Seg-
mented image.
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Faster-RCNN and its Multichannel Variant

A state of the art model for object detection is Faster-RCNN [29]. The
outputs of RPN are evaluated towards their probability of containing an ob-
ject or not, with the use of a convolutional layer. What boxes are likely to
contain an object are passed though a Non-Maximal Suppression module,
which discards boxes that have an overwhelming overlap, except one. The
remaining bounding boxes are classified with an other convolutional layer,
producing final predictions of bounding boxes along with their classes. Dur-
ing training, the RPN is trained separately from the rest of the network.
Namely, proposals are regressed towards the ground truth boxes. For details
on this procedure we suggest referring to the work of [32].

Figure 5: Design of the Multichannel Disease Detection Module. It can replace the Disease
Detection part of the pipeline to in order to use more than 3 channels.

When it comes to utilizing the full set of bands available we used a custom
model with Faster-RCNN head and the two identical pretrained backbones:
one for the RGB channels and one for the 850 nm. This idea is similar
in principal to [89]. In more detail, as shown to Figure 5,the features pro-
duced by two ResNet architectures are merged together using a simple 2d
convolutional layer and fed into the Faster-RCNN head.

Performance measures

A straightforward method to evaluate an object detector is to compute
the Intersection over Unions (IoU) between the output boxes and the ground
truth boxes. Figure 6 illustrates the IoU. However this naive approach omits
entirely what makes a good detector, which is the precise prediction of the
ground truth box with a single detection. For example, a detector that
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achieves a high IoU predicting multiple bounding boxes per ground truth
box, is not considered to be a good one. The questions arising how to treat
duplicate detections. The answer depends on the decision rule applied. That
filtering step can be based either on IoU, classification scores of a mix of those
two. What COCO algorithm does is it integrates over an IoU curve. Keeping
a low IoU threshold between prediction and ground truth will allow smaller
predictions to pass through, while a higher threshold will accept only a high
overlap between the two. In detail, COCO thresholds duplicate detections
solely on IoU and does so for multiple threshold values, ultimately computing
an Average Precision. Doing so for all classes yields a mean Average Precision
(mAP). For reference, we used the Pycocotools 3 implementation library. In
their implementation each ground truth box matches the best prediction
(score-wise and the IoU-wise). Mean AP has become a benchmark metric
in the latest object detection literature and in competitions like LSVRC and
COCO.

Figure 6: Intersection over union (IoU) between to closed curves, here two bounding boxes.
A and C are the areas of the non-intersected sections and B is the intersection. The some
of all defines the union area.

Apart from the COCO metrics, what we think will prove valuable from
the agronomist’s perspective is to evaluate our results in a different manner.
For that reason we also evaluated each image as a single detection. In detail,
if a single detection is matched to a ground truth box, the image is considered
as a True Positive (TP). If there are no detections but there is at least one
ground truth box, the image counts as False Negative (FN). In the contrary,
if there is at least one detection but no ground truth boxes, it counts as a
False Positive (FP).

3https://github.com/cocodataset/cocoapi/tree/master/PythonAPI/pycocotools
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Deep Learning design

The proposed modules of the pipeline are shown in Figure 7. After image
acquisition (see b), the spectral cube is normalized over mean and standard
deviation, in order to follow the priors introduced by the dataset COCO,
in [90], which we used for pre-training our models. Moving on at the third
step, these cubes are fed to the detection pipeline of a deep neural network,
which produces bounding boxes of the form (x, y, width, height), and their
respective classification scores. Each bounding box defines the limits of a
prospective lesions. At the final step, the resulting bounding boxes are fil-
tered based on the confidence of the network. The remaining detections are
used to calculate two indices. The first is for performance evaluation, namely
we calculate the Average Precision (AP), as proposed in the COCO evalua-
tion procedure [90]. The second one is the ratio of lesion area to healthy leaf
area (see section b), which is a useful measurement for the agronomist, as an
estimation of the stage of the disease.

Figure 7: Design of the Deep Learning pipeline.

Experimental Design and Evaluation

In our experiments we aim to showcase the feasibility of using a deep
learning lesion segmentation framework in real conditions and and the po-
tential to use NIR the channel to improve its efficiency.
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The main tool we used was the Pytorch Faster-RCNN4 implementation
with a ResNet50 backbone feature extractor pretrained on ImageNet [91],
while the whole network was pretrained on COCO ’17. From this snapshot
of the model we continued training using the “approximate joint training
method”; that is the losses from the classifier, bbox regressor and RPN-
bbox regressor were added together to form a loss which is back-propagated
throughout the model parameters. Finally, we selected IoU and classification
score thresholds for our own evaluation method, while for the COCO evalu-
ation we left it at its default values (IoU threshold = 0.5 and score threshold
= 0.5).

To clearly showcase the added value of the NIR channels, we set up two
experiments. In the first experiment, dubbed A, we used channels 630 nm,
540 nm, 460 nm as a three channel input to a vanilla pretrained Faster-RCNN
model.

In the second experiment, B, we improvised a two parallel backbone ar-
chitecture to add three more channels to our input. Those channels were 850
nm, 980 nm and thresholded NDVI. The third one is basically a mask for
the leaf area of the cube. In this experiment achieved a higher mAP score
(see Table 4).

To elaborate a bit on the results we need to clarify some notions of the
COCO evaluation. When matching ground truth boxes to detections, COCO
considers a maximum number of detections, maxḋets beyond which all detec-
tions are discarded. This threshold is set by default at values 1, 10 and 100.
bbox sizes represents what types of boxes are used for evaluation. Detections
are divided into small, medium and large based on their size. What this
manages to show is how the system performs in those cases separately.

Figure 4 gathers the two experiments in its two three columns. We
achieved mAP values of 16.0% and 20.2% for A and B, respectively; this
may appear low, but one should keep in mind the operational conditions
of an actual greenhouse, rather than a laboratory, under which the images
were captured. Our speculation is that the variety in ground truth bounding
boxes sizes and aspect ratios, in combination with the uneven distribution
of occurrences across images, yielded a low mAP value due to averaging out,
which is agnostic to such kind of parameters.

Finally, results for the second performance measure technique, discussed

4https://pytorch.org/vision/0.8/models.html#faster-r-cnn
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(a) (b)

(c) (d)

Figure 8: (a): False positives due to multiple detections for a single ground truth and (b):
with an ambiguous ground truth due to low visibility. (c): False negative example due to
low visibility and (d): due to a “crowd”-like group of lesions.

Table 4: Evaluation results of Faster-RCNN detector using the Pycocotools library. Mean
average precision appears in bold. The two tables refer to experiments A and B, respec-
tively. For each metric, the score for each output class is also provided. Results are
averaged over a five-fold cross validation.

Metric IoU bbox sizes max.dets Exp. A TA presence LT presence

AP(mAP) 0.50:0.95 all 100 0.187 0.083 0.296
AP 0.50 all 100 0.475 0.253 0.717
AP 0.75 all 100 0.084 0.022 0.174
AR 0.50:0.95 all 1 0.117 0.04 0.2
AR 0.50:0.95 all 10 0.258 0.135 0.379
AR 0.50:0.95 all 100 0.266 0.147 0.379

Metric IoU bbox sizes max.dets Exp. B TA presence LT presence

AP(mAP) 0.50:0.95 all 100 0.196 0.099 0.303
AP 0.50 all 100 0.506 0.278 0.755
AP 0.75 all 100 0.094 0.038 0.147
AR 0.50:0.95 all 1 0.121 0.045 0.201
AR 0.50:0.95 all 10 0.264 0.146 0.39
AR 0.50:0.95 all 100 0.276 0.165 0.39

in section b, are shown in Table 5. Again, the addition of extra channels as
input to our model, along with the second backbone that is used, evidently
improve results. The purpose of this evaluation technique is to answer to the
expert’s question ”Is there presence of lesions on this plant?”. This question’s
easiness to answer using an object detector is projected on the numerically
high (> 90%) results it yields.

It is also evident from the results that the model performs better overall
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(a) (b)

(c) (d)

Figure 9: Detection results using Faster-RCNN for (a,b): Leveillula taurica and (c,d):
Tuta absoluta

for LT for either metric. That could be due to LT having a subtle appearance
on the leaf, with approximately constant aspect ratio. In the contrary TA
is clearer to the eye, grows and changes shapes in a faster pace. Thus, it is
speculated that the consistency in LT examples makes its detection an easier
problem than the detection of TA.
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Table 5: Detection results using the proposed evaluation method. Each image constitutes
a detection, which is meaningful from the agronomists perspective, since the sole presence
of the disease on a plant is enough knowledge for the expert to take action. The two
tables refer to experiments A and B, respectively. For each metric, the score for each class
separately is also provided. Results are averaged over a five-fold cross validation.)

Metric Exp. A TA presence LT presence

Precision 0.886 0.779 0.973
Recall 0.958 0.916 1.0
F1 0.92 0.854 0.986

Metric Exp. B TA presence LT presence

Precision 0.857 0.724 0.99
Recall 0.957 0.914 1.0
F1 0.904 0.813 0.995

Discussion and Conclusions

To interpret our results further, we need to consider the types of false
detections assessed by the proposed methods. On the one hand, false positive
(FP) cases typically occur where the model interprets leaf morphology (e.g.
a hole) as a lesion or when multiple detections account for a single ground
truth in its neighborhood. Examples of these two cases are shown in Figure
8a. Based on the results of mAP which is affected by FPs, the use of the
FPN module in the Faster-RCNN architecture helped overcome the problem
of the detection of small lesions, which occur especially in the early stages
of inoculation. On the other hand, false negatives (FN), which affect the
mAR metric, can arise under two main scenarios. One case is when, due to
low visibility (Figure 8c), it is challenging even for the expert to decide on
lesion presence or absence. Another case is when a single detection accounts
for multiple neighboring ground truth boxes (see Figure 8c, right). The
COCO dataset format supports such an annotation attribute for a bounding
box, called “crowd”. However, the typical case of use is when there is an
overlap of object of the same class in the image. In our case, even if there
are examples of lesions extremely close together, the limit after which they
should be referred to as “crowd” is unclear. This is due to the nature of the
disease, which expands maze-like patterns.
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The use of the latter architecture for fewer secondary channels, required
an extra module to convert the number of channels to three for them to feed
to the backbone. That K-to-Three channels convolutional layer introduces
the problem of how to train the additional untrained modules alongside the
already pretrained backbone. That is even if NIR provides additional input
which can lead to better results. We tried naively training it along with
the rest of the pretrained backbone, however it yielded lower results than
expected which is why we set it aside for a future work.

To conclude, this work contributes a publicly available multispectral dataset
on Tuta absoluta and Leveillula taurica, and presents a baseline experimenta-
tion for their localization and classification at their early stage of inoculation.
This dataset is unique to our knowledge. Moreover, we have showcased that
the NIR channels of the multispectral data provide added value for back-
ground extraction during preprocessing by using NDVI - 630 nm channel
pairs, and can further enhance the detection results by incorporating as ad-
ditional channel on top of the typically used RGB channels. The resulting
dataset and methods can be readily applied in image recognition applications
for greenhouse tomato cultivation, for the purpose of disease and pet man-
agement. Especially in the case of systems that support automated image
acquisition such as robotic and camera rig applications.
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C. A. Narváez-Vasquez, J. González-Cabrera, D. C. Ruescas, E. Tabone,
J. Frandon, et al., Biological invasion of european tomato crops by tuta
absoluta: ecology, geographic expansion and prospects for biological
control, Journal of pest science 83 (3) (2010) 197–215.
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