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Abstract

The eye center localization is a challenging problem

faced by many computer vision applications. The chal-

lenges typically stem from the scene variability, such as,

the wide range of shapes, the lighting conditions, the view

angles and the occlusions. Nowadays, the increasing in-

terest on deep neural networks requires a large volume of

training data. However, a significant issue is the depen-

dency on labeled data, which are expensive to obtain and

susceptible to errors. To address these issues, we propose

a deep network, dubbed PupilTAN, that performs image-

to-heatmap Translation and an Adversarial training frame-

work that solves the eye localization problem in a few-shot

unsupervised way. The key idea is to estimate, by using only

a few ground-truth shots, the heatmaps centers’ pdf and use

it as a generator to create random heatmaps that follow the

same probability distribution of the real ones. We showcase

that training the deep network with these artificial heatmaps

in an adversarial framework not only makes us less depen-

dent on labeled data, but also leads to a significant accu-

racy improvement. The proposed network achieves real-

time performance in a general-purpose computer environ-

ment and improves the state-of-the-art accuracy for both

MUCT and BioID datasets, even compared with supervised

techniques. Furthermore, our model is robust even in the

case of reducing its size of up to 1/16 of the original network

(0.2M parameters), demonstrating comparable accuracy to

the state-of-the-art with high practical value to real-time

applications.

1. Introduction

The tremendous progress of computer systems over the

last decades and their penetration in almost every aspect of

the human life has inevitably induced a growing interest

in improving the human-computer interaction (HCI). Sys-

tems that exploit the eye gaze, offer a convenient and nat-

ural mean of interaction without the requirement of physi-

cal contact. Eyes constitute the most distinctive features of

the human face, while the iris positions with respect to the

head pose and gaze are significant sources of information

regarding the cognitive and affective state of human beings.

Specifically, the information about the location of the eye

centers is commonly used in applications such as face align-

ment, control devices for disabled people and user atten-

tion (e.g., driving and marketing) [1, 2]. Moreover, the eye

center coordinates can be exploited to estimate the gaze by

transforming the gaze angles (roll, yaw) to a 3D gaze vec-

tor [3]. Despite the active research in this field, precise eye

center localization and tracking remains a challenging prob-

lem due to many limitations that downgrade the accuracy of

the detected eye centers. These limitations are related to

the great variety in shape and colour of human eyes, the

eye state (open or closed), the iris direction, the facial ex-

pressions, the head pose etc. The localization accuracy can

be also reduced under the presence of occlusions from hair,

glasses, reflections and shadows and is strongly affected by

the lighting conditions and the camera resolution.

Precise eye localization and tracking becomes even more

challenging in real-time applications, where the need of

real-time performance is crucial. Obtaining high-quality

data to train supervised eye localizers constitutes an expen-

sive and challenging task. Moreover, unintentionally and

often unavoidably, labels are subject to human error (i.e.,

inaccurate ground-truth labels). On the other hand, there is

a plenty of unlabeled eye data available for free.

In this paper, we introduce a novel framework, Pupil-

TAN, that tries to solve the eye localization problem in an

unsupervised way. Unsupervised learning is a type of algo-

rithm that exhibits self-organization to capture the hidden

patterns contained in unlabeled data. In contrast to super-

vised learning, which intends to infer a conditional on the

label of the input data, unsupervised learning intends to in-

fer an a-priori probability distribution.

In this context, we consider the eye localization problem

as an image-to-heatmap regression and exploit the special

form of the desired heatmaps. Specifically, we treat it as a

2-D isotropic gaussian kernel with constant standard devia-

tion; its center is considered to be a normal random variable,

whose pdf is estimated by using a small sample of the avail-

able ground-truth. The adversarial framework that we pro-



pose in the sequel exploits that knowledge and aims to train

in an unsupervised way a translator network to capture the

probability density of the incoming data. To the best of our

knowledge, this is one of the first attempts, if not the first,

in the literature that an adversarial framework is adopted to

solve the eye localization problem, in an unsupervised man-

ner. The main contributions of this work are summarized as

follows:

• A novel adversarial framework for unsupervised eye

localization.

• Superior accuracy over the state-of-the-art techniques

in two publicly available databases.

• Significant reduction of network size with high practi-

cal value in real-time applications.

2. Related Work

In this section, we review relevant works on eye center

localization and generative adversarial networks (GANs).

Eye localization methods, can be roughly divided into the

following two main categories:

• Feature-based methods and

• Appearance-based methods.

Feature-based methods use a priori knowledge to detect

candidate eye centers from simple pertinent features based

on shape, geometry, color and symmetry. These features are

obtained from the application of specific filters on the image

and don’t require any learning or model-fitting techniques.

The idea of isophote curvatures was proposed by Valenti et

al. [4] as a voting scheme for detecting eye locations. Ra-

dial symmetry operators have also been employed for eye

detection; they are typically combined with other operators

[5, 6]. In works [7, 8] a Modified Fast Radial Symmetry

Transform (MFRST) was proposed. It emphasized on the

shape of the iris and combined the edge information that re-

sults from an edge-preserving filtering and the intensity in-

formation, in order to find shapes with high radial symme-

try. In general, appearance-based methods employ a prior

model of the eye holistic appearance and surrounding struc-

tures and try to detect the location of the eyes by fitting the

trained model. For this purpose, many machine learning

algorithms have been proposed such as Bayesian [9] and

hidden Markov models (HMMs) [10], support vector ma-

chines (SVM) [11] and AdaBoost [12]. Markus et al. [13]

localized the eye pupil by using an ensemble of randomized

regression trees. Convolutional Neural Networks (CNNs)

have recently attracted interest in their use as eye detectors.

In Fuhl’s [14] research, coarse to fine pupil localization was

carried out using two similar convolutional neural networks.

The first one provided a coarse position of the pupil while

the second refined that position using smaller subregions as

input. Li et al. in [15] also proposed a two-stage CNN to de-

termine the most likely eye regions and to locate their cen-

ters. Deep CNNs have also achieved several improvements

over the last years. Xia et al. [16] proposed a FCN with

a large kernel convolutional block to localize the eye cen-

ters using heatmaps. In [17] and [18] a deep FCN pipeline

was proposed using heterogenous CNN models trained to

detect the face, remove the eye glasses, extract the facial

landmarks and finally localize the pupil centers.

Generative Adversarial Networks, recently introduced

in [19], aim to discover the underlying distribution from

large amounts of data. Such models have been used to

several tasks, like image generation [20], image composi-

tion [21], text-to-photo translation [22] and image-to-image

translation [23].

The task of image-to-image translation involves learning

of how to map a given source image to a specific target im-

age. Learning the mapping from one visual representation

to another requires an understanding of underlying features

that are shared between these representations [24]. These

approaches can be further divided into supervised and unsu-

pervised ones. A supervised method requires a set of paired

images in different domains and the model learns the prob-

ability distribution from one domain to another. Pix2Pix

[25] was a supervised image-to-image translation approach

based on a conditional generative adversarial network. The

Generator used a “U-Net” like architecture and the Discrim-

inator a convolutional based “PatchGAN” as classifier. Un-

supervised image-to-image translation aims at learning the

mapping between two or more domains without paired im-

ages and it has recently been explored intensively due its

ability to learn the cross-mapping in the image-to-image

translation problem. CycleGAN [23] aimed to learn the

mapping between a set of unpaired images from two dif-

ferent domains. Its architecture was based on a symmet-

ric structure of two Translators and two Discriminators and

performed two mappings: the forward cycle mapping from

the input domain to the target domain and the backward

one. Robinson et. al [26] proposed a laplacian facial land-

mark localizer based on image-to-heatmap translation and

improved its model accuracy using an adversarial frame-

work trained on unlabeled data. Despite the growing inter-

est, unsupervised localization remains challenging due to

the difficulty to localize objects without annotations.

Our work tries to overcome this obstacle by transforming

the eye localization problem to an image-to-heatmap trans-

lation and by training a generative adversarial network with

random artificial heatmaps derived from the same pdf as the

real ones. We believe that in the case of image-to-heatmap

translation, the pdf of the paired heatmaps can be estimated,

initially by using only a few ground-truth samples, and then

training will be performed by using unlabeled images in an



Figure 1. The eye’s region around its center (a), its idealization

modelled by a heatmap with center at the pixel where the real eye’s

center is located and std equal to the radius of the circle that covers

the iris area (b), and the fake heatmap achieved by PupilTAN (c)

unsupervised fashion.

3. The Proposed Solution

In this section, we are going to give a detailed description

of the proposed solution to the eye localization problem. To

this end, we begin with the reformulation of the problem

at hand into an image-to-heatmap regression one. In order

to achieve our goal we considered an idealization of the re-

gion around the human eye center that can be modeled by

a heatmap whose center coincides with the eye center and

its standard deviation is controlled by the size of the iris.

Our proposition is verified by the content of Figure 1.(a-c)

where we can see an example.

In particular, we reformulate the eye localization prob-

lem into an image-to-heatmap regression problem and ex-

ploit the special form of the desired heatmaps. We demon-

strate that instead of using the paired ground-truth to train

an image-to-heatmap localizer, we can use randomly cre-

ated heatmaps from the same pdf. Specifically, we treat

them as a 2-D Gaussian kernel with constant standard de-

viation and its center as a normal random variable, whose

pdf is estimated by using a small number of the available

ground-truth data.

Based on our proposition, an adversarial framework is

proposed that exploits the apriori knowledge and aims to

train a deep neural network in an unsupervised way, using

only a few ground-truth samples.

Finally, we are going to present the implementation de-

tails including the network architecture and the training pro-

cedure.

3.1. Preprocessing

To transform the eye center localization problem to an

image-to-heatmap regression one, we propose the follow-

ing preprocessing steps. Specifically, in every image of the

training set, in the first stage of the pipeline the face is de-

tected using the real-time face detector proposed by Viola

and Jones [27] while in the second one, the two eye Regions

of Interest (ROIs) are selected, based on the face geometry

[7],[8]. Then, each ROI is resized to 64 × 64 pixels and

transformed to a grayscale image in order to feed the trans-

lator. For every such image, the translator aims to predict

a heatmap, of the same size, with its values indicating the

per-pixel confidence of the location of the eye center. The

position where its maximum value is attained corresponds

to the predicted eye center coordinates.

It is clear that since for each image there is a ground-truth

eye center xgt, we can derive the corresponding heatmap by

using a kernel function, like the Gaussian one, as follows:

H(x|xgt) = e
||(x−xgt||

2
2

2σ2 (1)

where, x belongs in the ROI and σ is the standard deviation

of the kernel that determines the width of the heatmap. Due

to the above mentioned preprocessing, the size of the iris

has small variation and its approximate size can be inferred

from the size of the detected face [6]. We set this hyperpa-

rameter to σ = 7, which represents the expected iris radius.

Note that given a large set of annotated images by fol-

lowing such an approach we create a proper supervised

framework for the training of a deep neural network to solve

the eye center localization problem. However, this in turn

demands the existence of a large set of annotated images

(i.e., for each image of the set a ground-truth eye center xgt

must be given) a fact that constitutes an obstacle for super-

vised training. To overcome this obstacle and transform the

supervised training framework to a few-shot unsupervised

one, we are going to treat the xgt as a normally distributed

Random Variable (RV) Xc whose the parameters mc,Σc we

are going to estimate by using a small sample of the given

ground-truth eye centers. Our claim is based on the obser-

vation that the eye centers are normally distributed (Figure

2). This is exactly our goal in the next paragraph.

Estimating the Parameters mc,Σc

Thus, our objective is to estimate the parameters of a 2-

D Gaussian function. To this end, let us consider that the

following set of realizations of the above mentioned RV is

given:

Sc = {xn}
N
n=1. (2)

By using this small sample of the ground-truth eye centers,

we can estimate the parameters of the desired pdf by using



Figure 2. The Maximum Likelihood Estimated pdf fXc(xc) of the Random Variable Xc resulting from a small sample of 128 black dotted

ground-truth eye centers of the face database BioID and the remaining red dotted ground-truth centers superimposed onto the estimated

pdf (a). Top view of the fXc(xc) uncovering its isotropic nature (b)

the following maximum likelihood estimators:

m̂c =
1

N

N∑

n=1

xn (3)

Σ̂c =
1

N

N∑

n=1

(xn − m̂c)(xn − m̂c)
T . (4)

Having estimated the aforementioned parameters and with

|A| denoting the determinant of matrixA, we can use the

following pdf:

fXc
(xc) =

1

2π|Σ̂c|
1
2

e−
1
2 (xc−m̂c)

T Σ̂−1
c (xc−m̂c) (5)

as a generator of realizations xc of the RV Xc to define,

using the relation:

H(x|xc) = e
||x−xc||

2
2

2σ2 (6)

heatmaps that can be used for the unsupervised training of

a network.

In Figure 2.(a) the Maximum Likelihood Estimated pdf

fXc
(xc) of the Random Variable Xc obtained from a small

sample of 128 ground-truth eye centers of the face database

BioID, shown as black dots in the figure, is depicted. Note

that the remaining, shown with red dots, ground-truth cen-

ters are perfectly fitted to the estimated pdf. The top view of

the resulting pdf shown in Figure 2.(b) uncovers its isotropic

nature, a fact that simplifies the estimation problem and re-

stricts the number of the ground-truth needed for its solu-

tion.

3.2. Unsupervised Eye Localization

Let us consider the following set of training images:

SI = {Ik}
K
k=1 (7)

with each member Ik of this set constituting a realization of

the Random Variable I, i.e.:

Ik ∼ fI(I) (8)

where pdf fI(I) is unknown. Having created the mecha-

nism to generate heatmaps, we can form a large set of sam-

ples, let us denote it by:

SH = {H(xn|xc)}
M
n=1, M >> N, (9)

that can be used for the training of the Translational Ad-

versarial Network (TAN) shown in Figure 3. The entire

network is composed by the Translator and the Discrimi-

nator subnetworks. In such a deep architecture during the

training phase, the goal of the translational part of the net-

work H(x|I(x))) = T (I(x); θ), is to model through a set

of parameters θ the unknown pdf fH|I(H) of the heatmaps

H(x|I(x)).
The translator tries to confuse the discriminator by gen-

erating images as plausible as possible, while, at the same

time, the discriminator through a set of parameters ϑ in a

fully adversarial way tries to distinguish the fake translated

heatmaps from the real ones, thus enforcing the translator to

produce heatmaps that are as close they can be to the “real”

ones H ∼ fH(H). To this end, we are going to use the

following adversarial loss function proposed by [19]:

L(θ, ϑ) = EH∼fH(H)[log(D(H(x|xc)), ϑ))] +

EI∼fI(I)[log(1−D(T (I(x), θ), ϑ))]

(10)



Figure 3. PupilTAN Deep Architecture

and solve the following min−max optimization problem:

min
θ

max
ϑ

L(θ, ϑ). (11)

3.3. Network Architecture

As we can see from Figure 3 the Translational Adversar-

ial Network is composed by the Translator and the Discrim-

inator subnetworks. The Translator is a 3-stage encoder-

decoder network that can fully exploit hierarchical feature

representations for the transformation of the input images to

their corresponding spatial idealizations, i.e., to heatmaps.

The encoder comprises a pyramid structure of convolutional

blocks followed by batch normalization, rectified linear and

max-pooling layers in order to extract distinct geometrical

information in different scales. In particular, the first layer

consists of 128 channels and after each stage the channels

are doubled in order the whole net to be able to learn the

complex structures effectively. The decoder, on the other

hand, uses transposed convolutions to up-sample the fea-

ture maps on different scales reducing the number of chan-

nels by a factor of two. All convolutions but the last are

followed also by batch normalization and rectified linear

layers. The final feature map is fed into a one-channel con-

volutional layer with a tanh(.) activation function in order

to aggregate better multi-scale information and obtain the

final regression map.

The Discriminator consists of 4 fractionally-strided con-

volutional layers followed by batch normalization layers

(all but the first) and leaky-rectified linear layers with nega-

tive slope set to 0.2. The first layer consists of 128 channels

and after each stage the channels are doubled. Finally, a

one-channel convolutional layer follows with a sigmoid ac-

tivation function to form the output of the Discriminator.

To prevent both networks from overfitting, we add Dropout

layers with a rate of pdrop = 0.5 before the decoder part of

the Translator and on the top of the Discriminator.

The proposed framework was trained for 300 epochs and

batch size of 128 images. We use ADAM optimizer [28]

with initial learning rate of 2× 10−4 and momentum terms

β1 = 0.5 and β2 = 0.999. To speed up the training process,

we use a Nvidia GeForce GTX 1080 Ti GPU.

4. Experiments

4.1. Experimental Setup

Experiments were performed in two publicly available

face databases in order to evaluate the performance of the

proposed method. Specifically, the selected MUCT [29]

and BioID [30] databases are among the most challenging

and characteristic datasets and were widely used in previ-

ous eye-center localization techniques. The images where

the face detector failed to detect the face due to extreme

poses, were excluded for the experiments (2% for MUCT

and 5.96% for BioID). The MUCT face database consists

of 3755 low resolution (640 × 480 pixels) color images of

frontal or near frontal faces, containing a wide variety of

ages, ethnicities and light conditions. The images were ac-

quired using five webcams from different positions, result-

ing in a pose variation. This, in combination with the occlu-

sions from hair, glasses and reflections, increases extremely



its “difficulty” factor. The BioID database consists of 1521

grayscale images of 23 subjects taken at different times of

the day in different positions with a low resolution camera

(384× 288 pixels). The size, position and pose of the faces

varies. Furthermore, many subjects were wearing glasses,

while in some instances the eyes were closed or hidden by

strong reflections on glasses. Thus, BioID is regarded as

one of the most challenging databases. For the purpose of

eye center localization, 29 images that contain totally closed

eyes were manually removed.

In order to evaluate the accuracy of the proposed method

we adopted the normalized error, representing the worst eye

center estimation of the two eyes. The normalized error (e)

is defined as [31]:

e =
max{||ĈL − CL||2, ||ĈR − CR||2}

||CL − CR||2
(12)

where, ĈL, ĈR are the estimations of the left and right eye

center coordinates resulting from the application of the pro-

posed method and CL, CR are the manually labeled cor-

responding coordinates. The ||CL − CR||2 term represents

the distance between the two real eye centers and is used as

a normalization factor for the localization error. The accu-

racy of the algorithm is expressed by the ratio between the

number of the eye center localizations that fall below the

assigned error threshold and the total number of them. The

threshold e ≤ 0.25 represents the distance between the eye

center and the eye corners, the e ≤ 0.1 represents the range

of the iris and the e ≤ 0.05 represents the pupil area.

4.2. Experimental Results

The evaluation of the proposed method leads us to

the conclusion of a robust and highly precise localization

method. This method deals successfully with the most chal-

lenging circumstances including shadows, pose variations,

occlusions by hair or strong reflections, out-of-plane rota-

tions and presence of glasses (Figure 4).

4.2.1 Comparisons against state-of-the-art techniques

A comparison of the proposed method with the state-of-the-

art methods is carried out and the results are presented on

the following tables. All accuracies of the under compari-

son techniques are the published ones. To evaluate the accu-

racy of the proposed method, a 5-fold cross validation was

adopted. This validation is performed by randomly dividing

each dataset into 5 equal subsets and retaining every single

subset for validation and the remaining ones for training.

All the following tables provide supporting evidence of the

superior performance of the proposed method in terms of

accuracy. Table 1 contains the results obtained from the ap-

plication of the proposed method and other relative works,

on the MUCT database. It is evident that in the degraded

Table 1. Accuracy vs. normalized error in the MUCT database

Method Accuracy (%)

e ≤ 0.05 e ≤ 0.1 e ≤ 0.25

PupilTAN 97.15 99.32 100

MFRST2017 [7] 94.75 98.67 99.76

Skodras2015 [6] 92.90 97.20 99.00

Timm2011 [32] 78.60 94.90 98.60

Valenti2008 [4] 63.10 76.70 94.10

Table 2. Accuracy vs. normalized error in the BioID database

Method Accuracy (%)

e ≤ 0.05 e ≤ 0.1 e ≤ 0.25

PupilTAN 96.86 99.71 100

Lee2020 [18] 96.71 98.95 100

Choi2020[17] 93.30 96.91 100

Xia2019 [16] 94.40 99.90 100

Xiao2018 [33] 94.35 98.75 99.80

Li2018 [15] 85.60 95.90 99.50

Wang2018 [34] 82.15 98.70 100

MFRST2017 [7] 87.10 98.15 100

Anjith2016 [35] 85.00 94.30 -

Cai2015[36] 84.10 95.60 99.80

images of this database, the proposed method achieved a

significant improvement of 2.4% in performance over the

best method for the fine accuracy level (e ≤ 0.05).

PupilTAN performance in the low resolution images of

BioID face database is presented in Table 2 and compared

with the state-of-the-art techniques. The proposed tech-

nique outperformed its rivals for the fine accuracy level

(e ≤ 0.05) while it achieved almost equal performance

to the best method [16] (slightly lower by 0.19%) for the

case of e ≤ 0.1. The abovementioned results lead us to

the conclusion of a significant improvement of the proposed

method against the state-of-the-art methods.

4.2.2 Comparisons against the supervised counterpart

In order to highlight the effectiveness of the proposed ad-

versarial training framework, in this paragraph we conduct

comparisons with the same network trained in a supervised

way, by performing image-to-image regression. Specifi-

cally, we trained the proposed encoder-decoder part using

paired ROI images with the corresponding heatmaps de-

rived from Eq. (1). As a loss function, we adopt the L2

norm between the estimated and real heatmaps. For fair

comparison, we use the same network architecture and the

ADAM optimizer with the default training parameters [28].

Experiments performed on the BioID database and pre-

sented in Table 3, demonstrate that the proposed unsuper-

vised adversarial framework outperforms the corresponding

supervised by 1.64% for the case of e ≤ 0.05.



Figure 4. Precise eye center localization results on MUCT (a) and BioID (b) databases

Table 3. Accuracy comparisons between the proposed adversarial

and the corresponding supervised frameworks

Method Accuracy (%)

e ≤ 0.05 e ≤ 0.1 e ≤ 0.25

Adversarial 96.86 99.71 100

Supervised 95.22 99.22 100

Table 4. PupilTAN performance for different architectures in the

BioID database

NPar Time Accuracy (%)

e ≤ 0.05 e ≤ 0.1 e ≤ 0.25

3.18M 34ms 96.86 99.71 100

0.8M 19ms 96.29 99.71 100

0.2M 16ms 95.65 99.50 100

In general, unsupervised methods demonstrate inferior

performance in comparison to their supervised counter-

parts, mostly due to the absence of the ground-truth data.

However, results in Table 3, leads us to the conclusion that

the proposed unsupervised framework succeeds in estimat-

ing the probability distribution of the Real heatmaps and

mitigates the aforementioned issue. In this way, the adver-

sarial network achieves a better generalization of the eye

features and avoids to overfit to the training data resulting in

enhanced localization accuracy. Note that, our intention is

not to analyze ways to prevent from overfit and enhance the

localization accuracy of the supervised method, but instead

to highlight the advantage of using the proposed adversarial

framework.

4.2.3 Comparisons against different architectures

In this section we analyze the impact of reducing the net-

work parameters to the accuracy of the proposed method on

the BioID database. Specifically, we decrease the size of

the Translator by reducing the number of channels at each

convolutional layer by a factor of two. Despite the accuracy

decrease presented in Table 4, even the smallest model with

0.2M parameters still provides comparable accuracy to the

other state-of-the-art methods. Note that, the performance

after adding more parameters or layers saturates. Therefore,

in terms of network complexity, PupilTAN is significantly

reduced in comparison with other deep networks. Specif-

ically, the architectures proposed in [18] and [17] contain

13.6M and 4.9M respectively only for the face detection

and glasses removal networks, without considering the eye

localization network. Moreover, the processing speed also

increases when the network size decreases. For instance, the

Translator requires only 16ms (Matlab implementation) to

process every input face image for the smallest network.

5. Conclusions

In this paper, we introduced the PupilTAN, a few-

shot adversarial training framework that performs image-

to-heatmap translation for precise eye localization. In or-

der to overcome the dependency of the labeled data, this

framework aims to create artificial heatmaps, from a few

ground-truth, that follow the same probability distribution

of the real ones and train the Translator to accurately local-

ize the eye centers. An extensive evaluation of the proposed

method was performed on two publicly available databases



with low resolution images, containing many different cases

of challenging conditions. Comparisons with existing meth-

ods demonstrated a significant improvement in accuracy

over even supervised state-of-the-art techniques. More-

over, the robustness of the proposed deep network by sig-

nificantly reducing the number of its parameters was high-

lighted.
Given the real-time performance achieved by the pro-

posed method, we believe that this approach can be incor-
porated into low-cost eye trackers, where the localization
accuracy is fundamental.
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