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Abstract—Motion sequence classification methods that rely on
geometric approaches—such as Procrustes analysis and Dynamic
Time Warping (DTW)—offer high accuracy but are often un-
suitable for real-time applications due to their computational
cost. In this paper, we present a novel geometric knowledge
distillation framework that bridges the gap between accuracy
and efficiency by transferring rich geometric insights from a
Procrustes-DTW-based distance metric into a transformer-based
neural network. By generating soft probability distributions from
pre-computed Procrustes-DTW distances, we effectively guide
the student model’s training to preserve essential geometric
properties like shape similarity, temporal alignment, and spatial
transformation invariance. Our method enables fast and scalable
motion sequence classification while retaining the benefits of
geometric interpretability. We evaluate our framework on two
benchmark tasks: sign language recognition using the SIGNUM
dataset and human action recognition on UTD-MHAD. Re-
sults show that our distillation approach significantly improves
classification accuracy over standard supervised learning and
achieves dramatically lower inference time compared to tradi-
tional geometric methods—making it ideal for real-time motion
understanding in wearable, robotic, and interactive systems.

Keywords—Knowledge Distillation, Procrustes Analysis, Sign
Language Recognition, Action Recognition, Geometric Distance
Learning, Efficient Inference, Skeletal Sequences.

I. INTRODUCTION

Motion sequence classification from 3D tracking data has
emerged as a crucial technology with applications spanning
human-computer interaction, healthcare monitoring, and as-
sistive technologies. While deep learning approaches have
shown impressive results in this domain, they often struggle
to preserve the complex geometric relationships inherent in
human motion and require large amounts of annotated data—
a challenge especially pronounced in domains like action and
sign language recognition.

Procrustes analysis and its generalizations have emerged
as powerful techniques for shape comparison and alignment
[1], with successful applications in gait analysis [2], stroke
patient evaluation [3], and hand-grasping tasks [4]. Unlike raw
coordinate-based comparisons, Procrustes distance accounts
for transformations such as translation, scaling, and rotation,
allowing for more meaningful similarity measurements be-
tween shapes. One of the key advantages of Procrustes analysis
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is its invariance to transformations. When analyzing human
poses, facial features, or skeletal structures, raw coordinates
may vary significantly due to differences in positioning, cam-
era angles, or individual body proportions. By aligning shapes
to a common reference frame, Procrustes analysis ensures
that comparisons focus on structural similarities rather than
extraneous variations. When combined with Dynamic Time
Warping (DTW), as demonstrated in [5], this approach can
effectively compare motion sequences while preserving their
geometric properties. However, the computational complexity
of these methods at inference time creates significant barriers
to real-world deployment.

In this paper, we propose a novel approach that bridges
this gap through geometric knowledge distillation. Knowledge
distillation, first introduced by Hinton et al. [6], offers a
promising solution to this challenge. This approach transfers
knowledge from a complex but accurate “teacher” model to
a simpler, faster “student” model. Recent work has explored
various distillation approaches for motion-related tasks. Wang
et al. [7] propose a multi-modal distillation framework for
action recognition using RGB and infrared data. For hand ges-
ture recognition, Li et al. [8] employ multi-task learning with
self-distillation. Bian et al. [9] introduce structural knowledge
distillation for skeleton-based action recognition, while Gao
et al. [10] apply cross-modal distillation to continuous sign
language recognition.

However, these existing approaches focus primarily on
transferring feature representations or classification logits,
without explicitly preserving the geometric relationships cru-
cial for motion understanding. Our work addresses this lim-
itation through a novel distillation framework that leverages
Procrustes-DTW distance as the foundation for knowledge
transfer. By using pre-computed Procrustes-DTW distances
to generate soft probability distributions as our teacher sig-
nal, we ensure that the geometric understanding of motion
sequences—including shape similarities, temporal alignments,
and invariance to spatial transformations—is effectively trans-
ferred to the student network.

Specifically, our contributions are:

• A knowledge distillation framework1 that transfers geo-
metric understanding from Procrustes-DTW to a neural
network, enabling fast inference while maintaining high
accuracy.

1Code: https://github.com/imics-lab/geometric-knowledge-distillationCopyright: 979-8-3315-1213-2/25/$31.00 ©2025 IEEE
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• An efficient training procedure using pre-computed
Procrustes-DTW distances, particularly suitable for
limited-data scenarios.

• Comprehensive evaluation on sign language recognition
(SIGNUM dataset) and human action recognition (UTD-
MHAD dataset), demonstrating 3% and 7% improvement
in accuracy, respectively, without significant sacrifice in
inference speed compared to a direct deep learning model.

II. PROCRUSTES DISTANCE CALCULATION

We present a knowledge distillation framework that lever-
ages the Procrustes-DTW distance [5] to train an efficient
neural network for time series classification. Our approach
transfers the geometric understanding captured by Procrustes
analysis to a deep neural network through distillation, enabling
fast inference while maintaining high accuracy.

A. Standard Procrustes algorithm

The standard Procrustes distance is a measure of similarity
between two shapes. It quantifies how much one shape needs
to be transformed (translated, scaled, and rotated) to best align
with another shape. After aligning the shapes, the Procrustes
distance is the square root of the sum of squared differences
between corresponding points in the two shapes.

dproc(X,Y ) = min
R,s,t

∥X − (sY R+ t)∥F (1)

Where:

• X: The point configuration matrix of the first shape.
• Y : The point configuration matrix of the second shape.
• R ∈ Rd×d: The rotation matrix that aligns Y to X .
• s ∈ R: The scaling factor that normalizes the size of Y .
• t ∈ R1×d: The translation vector that shifts Y to align

with X .
• ∥ · ∥F : The Frobenius norm, ∥A∥F =

√∑
i,j a

2
ij .

• d(X,Y ): The Procrustes distance, representing the min-
imum residual error between the aligned shapes.

The translation t becomes zero by changing the coordinate
system to a common base (e.g., the wrist point in the case of a
hand). The covariance matrix among the two point sets (after
scaling) is computed as: H = (sY )⊤X .

We perform the singular value decomposition of H: H =
UΣV ⊤, where U and V are orthogonal matrices, and Σ is a
diagonal matrix of singular values. Then, the optimal rotation
matrix is given by: R = V U⊤.

B. Modified Procrustes Distance with Scale Normalization

For the problem of gesture recognition, we propose a mod-
ified Procrustes distance that integrates penalties for rotation
and translation changes when comparing two hands. This way,
we penalize how well two hand shapes match each other and
their position in the 3D space after the complete body skeletons
of the two users have been normalized and aligned. We also
normalize each error term automatically using empirical data.
This approach avoids manual hyperparameter tuning by scaling
each component based on intra-class variability. In particular,
we define a translation threshold δ so that only translations
larger than what is typical for the same sign incur a penalty.

Note: Rotation and translation penalties are not necessary
when comparing the entire skeleton of two users. In that case,
the standard Procrustes algorithm can be used.

1) Mathematical Formulation: Let X and Y denote the
point configuration matrices (e.g., handshape landmarks) of
two samples. The modified Procrustes distance is defined as

dproc(X,Y ) = min
R,s,t

{
∥X − (sY R+ t)∥F

σ1
+
∥ log(R)∥2F

σ2

+
max(0, ∥t∥ − δ)2

σ3

}
(2)

subject to R⊤R = I , where:

• σ1, σ2, and σ3 are the empirical standard deviations
of the alignment error, rotation penalty, and translation
magnitude (used for penalty) respectively, and

• δ is a threshold on the translation magnitude, determined
empirically (see Section II-B2).

2) Empirical Estimation of σk and δ: To automatically
normalize the different error components and to set δ, we use
intra-class pairs of samples (i.e., pairs that belong to the same
sign) as follows:

1) Intra-Class Pair Collection: For each sign class c, select
a set of pairs {(Xi,Xj)} where both Xi and Xj

represent the same sign.
2) Computation of Transformation Errors: For each pair

(Xi,Xj), compute the optimal transformation param-
eters (Rij , sij , tij) by performing standard Procrustes
alignment (without penalization). Then, record:

f
(ij)
1 = ∥Xi − (sij Xj Rij + tij)∥F , (3)

f
(ij)
2 = ∥ log(Rij)∥2F , (4)

f
(ij)
3 = ∥tij∥. (5)

3) Empirical Standard Deviations: Compute the standard
deviations for each error term over all intra-class pairs:
σ1 = std{f (ij)

1 }, σ2 = std{f (ij)
2 }, σ3 = std{f (ij)

3 }.
4) Determination of δ: To set the translation threshold δ, we

examine the empirical distribution of the translation mag-
nitudes {f (ij)

3 }. We then define δ as the α-th percentile
of this distribution: δ = Percentileα

(
{f (ij)

3 }
)
, where a

typical choice is α = 0.90. This means that for 90% of
intra-class pairs, the translation magnitude is below δ, and
only larger-than-usual translations incur a penalty.

III. PROCRUSTES - DTW AS A LEARNING PROBLEM

Consider a training dataset D = {(Si, yi)}Ni=1 where each
Si ∈ RT×D represents a time series sequence of length
T with D channels (features), and yi ∈ {1, ..., C} denotes
the corresponding class label. Our goal is to train a neural
network that can efficiently classify these sequences while
preserving the geometric relationships captured by Procrustes-
DTW distance.



1) Procrustes-DTW Teacher: The teacher component of
our framework is based on the Procrustes-DTW distance to
measure similarity between sequences. For any two sequences
Si and Sj , their Procrustes-DTW distance is defined as:

dP (Si,Sj) = min
W

K∑
k=1

dproc(Si[w
x
k ],Sj [w

y
k]) (6)

where W = (w1, ..., wK) is a warping path, K represents
the length of the warping path, and dproc is the Procrustes
distance between individual frames, as defined in equation 1
or 2, depending on the application.

During the pre-computation phase, we compute all pairwise
Procrustes-DTW distances between training sequences. The
teacher then uses these pre-computed distances to generate soft
probability distributions over classes. For an input sequence S,
the teacher’s prediction for class c is:

pt(c|S) =
∑

j∈Nc
exp(−dP (S,Sj)/τt)∑N

k=1 exp(−dP (S,Sk)/τt)
(7)

where Nc is the set of training examples from class c, τt is
the temperature parameter, and all dP values are retrieved from
the pre-computed distance matrix.

A. Student Network

The student network fθ : RT×D → RC is implemented
as a deep neural network that maps input sequences directly
to class probabilities. For an input sequence S, the student’s
prediction is:

ps(c|S) = softmax(fθ(S)/τs)c (8)

where τs is the student’s temperature parameter.

B. Knowledge Distillation Framework

Our training objective combines standard supervised learn-
ing with knowledge distillation:

Ltotal = αLCE + βLKL (9)

The cross-entropy loss LCE measures the student’s perfor-
mance against ground truth labels:

LCE = −
N∑
i=1

C∑
c=1

yic log(ps(c|Si)) (10)

The Kullback-Leibler divergence loss LKL encourages the
student to mimic the teacher’s soft predictions:

LKL =

N∑
i=1

C∑
c=1

pt(c|Si) log

(
pt(c|Si)

ps(c|Si)

)
(11)

The weights α and β control the contribution of each loss
term. To ensure effective knowledge distillation, we use the
same temperature parameter τ = τs = τt for both teacher and
student during training. This shared temperature controls the
softness of the probability distributions and thus the amount
of information transferred from teacher to student. During
inference, we use τs = 1 for the student network’s predictions,
as is standard practice in knowledge distillation.

C. Training Procedure

The training process consists of two phases:

1) Pre-computation Phase: To ensure efficient training, we
pre-compute Procrustes-DTW distances between all pairs of
training sequences. These distances are stored in a memory-
efficient format for quick lookup during training.

2) Training Phase: For each mini-batch B, we:

1) Retrieve pre-computed teacher predictions for the batch
sequences

2) Forward pass the sequences through student network
3) Compute combined loss Ltotal using temperature-scaled

predictions
4) Update student parameters via gradient descent:

θ ← θ − η∇θLtotal (12)

where η is the learning rate.

The optimization problem can be formally stated as:

min
θ

E(S,y)∼D[αLCE + βLKL] (13)

where D is our training dataset.

D. Inference

During inference, only the student network is used, en-
abling efficient prediction without the need for computing
Procrustes-DTW distances:

ŷ = arg,max
c

ps(c|S) (14)

This approach provides significant speedup compared to
the distance-based classifiers, such as the nearest-neighbor
classifier (KNN), while maintaining the geometric understand-
ing learned through distillation when training a deep learning
model.

IV. EXPERIMENTS

We evaluate our proposed knowledge distillation frame-
work on two challenging public datasets: the SIGNUM dataset
for sign language recognition [11] and the UTD-MHAD
dataset for human action recognition [12]. Our experiments
assess both the classification performance and computational
efficiency of three approaches: (1) k-nearest neighbor classifi-
cation using Procrustes-DTW distance, (2) direct supervised
learning with a transformer model, and (3) our proposed
knowledge distillation approach.

A. Datasets and Implementation Details

1) SIGNUM Dataset: The SIGNUM dataset [11] con-
tains 450 basic signs (classes) from German Sign Language
(DGS), performed by 25 different signers. We extract 3D
hand landmarks (21 points per hand) using MediaPipe Holistic
[13], resulting in a 126-dimensional feature vector per frame
(21 landmarks × 3 coordinates × 2 hands). The sequence
length is 80 timesteps. Following standard practice for signer-
independent evaluation, we split the dataset by signer ID:

• Training set: 14 signers (IDs 1-14), 6,300 sequences
• Validation set: 4 signers (IDs 15-18), 1,800 sequences
• Test set: 7 signers (IDs 19-25), 1,901 sequences



TABLE I. RESULTS ON SIGNUM DATASET (TEST SET)

Method Acc. Prec. Rec. F1 Infer. Time
(%) (%) (%) (%) (ms/sample)

Procrustes-DTW (k-NN) 63.9 68.2 64.4 63.1 3.6 × 106

Transformer (Direct) 86.9 89.5 87.1 86.6 0.22
Ours (Distillation) 90.2 91.7 90.2 89.8 0.35

TABLE II. RESULTS ON UTD-MHAD DATASET (TEST SET)

Method Acc. Prec. Rec. F1 Infer. Time
(%) (%) (%) (%) (ms/sample)

Procrustes-DTW (k-NN) 31.9 38.9 32.1 28.4 1.89 × 105

Transformer (Direct) 57.5 60.9 57.6 55.6 0.21
Ours (Distillation) 64.9 67.2 64.9 63.9 0.83

2) UTD-MHAD Dataset: The UTD-MHAD dataset [12]
comprises 27 actions performed by 8 subjects, with each action
repeated 4 times. We use the 3D skeleton data captured by
a Kinect sensor, which provides 20 joint positions in 3D
space. The sequence length varies from 45 to 125 timesteps.
The dataset contains 861 sequences after removing corrupted
samples. For subject-independent evaluation, we use:

• Training set: 5 subjects (IDs 1-5), 539 sequences
• Test set: 3 subjects (IDs 6-8), 322 sequences

Due to the small number of subjects in this dataset, we do
not use a validation set, as extensive hyperparameter tuning is
not the objective of this study.

Experiments were run on Azure Standard NC4as T4 v3
nodes, each with 4 AMD EPYC 7V12 vCPUs (2.45 GHz),
28 GiB RAM, 176 GiB local SSD, and an NVIDIA Tesla T4
GPU (16 GiB). We implemented our models using PyTorch.
The transformer architecture consists of 4 encoder layers with
9 attention heads, a hidden dimension of 256, and dropout rate
of 0.1. For training, we used batch size: 16; learning rate: 1e-
4; number of epochs: 400. For knowledge distillation, we set
temperature (τ ): 3.0; cross-entropy loss weight (α): 0.5; KL
divergence loss weight (β): 0.5.

B. Results and Discussion

Tables I and II present the classification performance and
computational efficiency of each approach on the SIGNUM
and UTD-MHAD datasets, respectively.

1) Classification Performance: As a baseline, for the 450-
class sign language recognition problem, the One-Nearest
Neighbor (1-NN) classifier using the Procrustes-DTW as the
distance metric achieves an accuracy of 63.9%. For refer-
ence, in addition to standard KNN classification accuracy,
we evaluate Top-10 Nearest Neighbor Accuracy (Recall@10),
which measures the proportion of test samples where the true
class appears among the 10 nearest training samples ranked
by the Procrustes-DTW distance. The Recall@10 accuracy
is 92.8%. The pure Transformer-based neural network model
achieves an accuracy of 86.9%, while our distillation approach
uses the exact same neural network architecture and train-
ing hyperparameters and achieves a 90.2% accuracy. This
∼3% improvement in accuracy is attributed to the geometric
knowledge distillation. Figure 1 shows the training loss and
accuracy curves for the training and validation sets on the

Fig. 1. Training curves comparing loss and accuracy for direct transformer
training (top) vs. distillation (bottom) on the SIGNUM dataset.

SIGNUM dataset. We observe a similar behavior for both
direct transformer and distillation models.

For the human action dataset, we observe an improvement
of ∼7% in accuracy, although the overall accuracy for all
methods is lower due to the dataset’s difficulty and smaller
size.

2) Computational Efficiency: The primary advantage of our
approach becomes apparent when considering inference time.
The Procrustes-DTW k-NN classifier requires several orders
of magnitude higher computation time (3.6 × 106 ms/sample
for SIGNUM, 1.9 × 105 ms/sample for UTD-MHAD) due
to the need to compute distances to all training samples.
Even though several efficiency improvements can be made to
distance-based classification methods, inference time remains
prohibitively high for real-time applications. In contrast, our
distilled model, similar to the direct transformer, achieves sub-
millisecond inference time per example (0.35 ms/sample for
SIGNUM, 0.83 ms/sample for UTD-MHAD), representing a
speedup of over 106x.

V. CONCLUSION

We presented a knowledge distillation framework transfer-
ring geometric understanding from Procrustes-DTW to effi-
cient neural networks. Our approach achieves significant ac-
curacy improvements over standard transformer training while
maintaining sub-millisecond inference times—combining the
geometric understanding of Procrustes analysis with the com-
putational efficiency of deep learning. This makes our method
particularly valuable for real-time applications requiring pre-
cise geometric understanding, such as sign language translation
and motion-based interfaces. Future work could extend this
approach to continuous recognition tasks and other domains
where shape and motion properties are essential.
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