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Abstract—We investigate a quantum data reduction technique
with application to video classification. A hybrid quantum-
classical step performs data reduction on the video dataset gen-
erating “representative” distributions for each video class. These
distributions are used by a quantum classification algorithm
to firstly reduce the size of the videos and then classify the
reduced videos to one of k classes. We verify the method using
sign videos and demonstrate that the reduced videos contain
enough information to successfully classify them using a quantum
classification process.

The proposed data reduction method showcases a way to
alleviate the “data loading” problem of quantum computers
for the problem of video classification. Data loading is a huge
bottleneck, as there are no known efficient techniques to perform
that task without sacrificing many of the benefits of quantum
computing.

Index Terms—quantum computing, data reduction, video clas-
sification

I. INTRODUCTION

In the past few years there has been a lot of interest
in exploring quantum computing applications for classical
computational problems. Quantum computing, by taking ad-
vantage of the quantum mechanical properties of nature, offers
a new toolbox for attacking such problems with potentially
great benefits in efficiency and performance. Image and video
classification algorithms are an important subset of algorithms
where quantum computing applications are actively investi-
gated [1]–[7], though, to our best knowledge, applications on
video processing are only sparsely researched [8].

One important issue with quantum video processing applica-
tions is that they require the transfer of large amount of data
from the classical machines to the quantum computer. This
“data loading” of the quantum computer is a huge bottleneck
as there are no known efficient techniques that can perform
such a task without sacrificing many of the quantum-gains [9]–
[12].

This problem is not unique to video processing applica-
tions [13]. For example, solving a system of linear equations
through the HHL algorithm is usually stated as needing
O(log(n)) steps for n equations. This statement, though, hides
many assumptions, one of which is that one should be able to
read and store n parameters on at most O(log(n)) steps [14].

In general, it is possible that near-term applications will
mostly concern the cooperation of the classical hardware

with small quantum computing units [9]. This highlights
the importance of reducing the classical data space before
communicating with the quantum hardware. One proposal,
by Harrow [9], is using hybrid classical-quantum algorithms
where a “representative” subset of a problem’s data set is
extracted. This subset is then used as input to the quantum
computer instead of the whole data set. Here we present a
different method where instead of extracting a representative
subset, a representative distribution is generated that aims to
capture the most significant features of the feature vectors of
the dataset. This distribution is then used to extract specific
subparts from the full dataset and is fed to the desired quantum
algorithm.

A. Contribution
In this work we propose a data reduction scheme on a hybrid

classical-quantum algorithm for video classification. Using a
hybrid procedure, we extract the most important pixels of a
video which we then use as the reduced “training set”. We
classify each new video based only on these pixel distri-
butions. We perform simulations of the proposed algorithm
verifying that meaningful information can be extracted from
just a small percentage of the initial video. The videos are
accurately classified showing that the algorithm is capable
of accurately identifying the most significant pixels using an
efficient quantum procedure. To the best of our knowledge this
is the first such approach.

Even though we evaluate the proposed technique using a
video dataset, it should, in principle, be applicable to any other
dataset where differences between successive feature vectors
are correlated as, for example, is usually the case in time series
data.

In Section II we provide the background knowledge. In
Section III we describe the proposed method. In Section IV
we present our results on a public dataset. Finally in Section V
we discuss the merits and constraints of the method.

II. QUANTUM BACKGROUND

Quantum computers use quantum states of two levels (a
qubit) to store and process information instead of using bits
of 0 and 1. Abstractly, a qubit is a two-dimensional vector

of complex parameters and norm 1, i.e., |qubit⟩ =

(
a
b

)



with a, b ∈ C and |a|2 + |b|2 = 1. Similarly, a series
of n quantum bits (often referred to as a quantum regis-
ter) form a 2n-dimensional vector of complex parameters
and norm 1. We define the computational basis as the
one-hot orthonormal basis: |0⟩ =

(
1 0 · · · 0

)T
, |1⟩ =(

0 1 · · · 0
)T

, · · · |2n − 1⟩ =
(
0 0 · · · 1

)T
.

Using these definitions, a general quantum register is written
as a linear combination of the computational basis |q⟩ =
a0 |0⟩ + a1 |1⟩ + · · · + a2n−1 |2n − 1⟩. The parameter ai is
called the amplitude of the state |i⟩. The actual parameters
of a quantum register are unknowable. When the value of a
quantum register is needed a measurement is performed. The
result of the measurement gives one of the computational basis
vectors. In particular, the result of measuring the register |q⟩
above is |i⟩ with probability |ai|2.

Quantum registers are manipulated by use of quantum gates
(also called quantum operators) which act as the quantum
analog of the classical logical gates (AND, OR, NOT, etc).
Quantum gates are represented by complex unitary matrices
of appropriate dimensions and their action is calculated by
simple matrix multiplication.

A. Inner product estimation

The Inner product estimation is an efficient subroutine for
the estimation of the inner product between two quantum
registers |a⟩ , |b⟩. The subroutine has three steps. Firstly an
ancilla qubit is entangled with the two quantum registers
producing the register:

|ϕ⟩ = 1√
2

(
|0⟩α |a⟩+ |1⟩α |b⟩

)

Secondly, a Hadamard gate H = 1√
2

(
1 1
1 −1

)
with H |0⟩ =

1√
2

(
|0⟩+ |1⟩

)
and H |1⟩ = 1√

2

(
|0⟩ − |1⟩

)
, is applied on the

ancilla qubit:

Hα |ϕ⟩ = 1√
2

(
1√
2

(
|0⟩α + |1⟩α

)
|a⟩+ 1√

2

(
|0⟩α − |1⟩α

)
|b⟩

)
=

1

2

(
|0⟩α

(
|a⟩+ |b⟩

)
+ |1⟩α

(
|a⟩ − |b⟩

))
Then, a measurement of the ancilla qubit is performed. The
probability of measuring |0⟩α is its amplitude squared, thus:

P (|0⟩α) =
∥∥∥∥12 (|a⟩+ |b⟩)

∥∥∥∥2
=

1

4

√∑
i

(ai + bi)(ai + bi)

2

=
1

4

∣∣∣∣∣∑
i

aiai + aibi + biai + bibi

∣∣∣∣∣
=

1

4
|⟨a|a⟩+ ⟨a|b⟩+ ⟨b|a⟩+ ⟨b|b⟩| = 1 + ⟨a|b⟩
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since, by definition, ⟨·|·⟩ ≥ 0 and ⟨x|x⟩ = 1. Therefore, by
repeatedly measuring the ancilla qubit an estimate for the inner
product ⟨a|b⟩ can be calculated.

B. Amplitude encoding
One often employed method to encode classical data

to quantum registers is the amplitude encoding in which
one encodes the information of a classical vector on the
amplitudes of the computational basis. So, a vector v =(
v0, v1, . . . , vn

)
is encoded to the quantum register

|v⟩ = 1

∥v∥
∑

vi |i⟩ .

C. QRAM
A “Quantum RAM” (QRAM) is a classical or quantum data

structure that outputs quantum states. Like its classical analog
RAM, it is used to store and retrieve information in a “Random
Access” model, i.e., any desired bit of information can be
addressed individually at will. Various QRAM models have
been proposed that provide efficient implementations for the
crucial quantum state storing and retrieving procedures [15],
[16]. The inner product estimation algorithm, for example, that
is used in this work, can be efficiently implemented using a
QRAM [17].

III. METHODOLOGY

We are going to demonstrate the proposed method by means
of a video classification application. The task is to classify
short videos displaying different types of hand motion into
one of k classes. The methodology can be easily generalized
to classification tasks involving high-volume data.

We assume that each video is represented by an N×N×T
matrix (height×width×frames) of values in the range [0..1]
and belongs to one of k classes. We will reduce the information
contained in this N × N × T -sized matrix to a 2q-sized
quantum state using q qubits. When a classical-to-quantum
video conversion is needed we use the amplitude encoding
as described in Section II-B. We assume that a training set
consists of M × k videos with M videos for each class.
The overview of the algorithm is given in Algorithm 1 and
schematically in Figure 1.

A. Convert frames of the training set to quantum states.
Using the amplitude encoding we convert successive frames
to quantum states.

B. Perform “difference” transform on the quantum
states and store in a QRAM. We use the fact that among
successive frames of continuous videos the differences are
small. A difference transform efficiently converts two succes-
sive frames |q1⟩ and |q2⟩ to their difference |q1⟩ − |q2⟩ by
using an ancilla qubit and a Hadamard gate, similarly to the
inner product estimation subroutine of Section II-A:

|ϕ⟩ = 1√
2

(
|0⟩α |q1⟩+ |1⟩α |q2⟩

)
Hα |ϕ⟩ = 1√

2

(
|0⟩α

(
|q1⟩+ |q2⟩

)
+ |1⟩α

(
|q1⟩ − |q2⟩

))



Algorithm 1 Video reduction and classification with a quan-
tum algorithm

for All training videos do
Convert frames to quantum registers.
Apply “difference” transform to consecutive frames.
Store result in QRAM.

end for
for All classes do

Calculate average video.
Get sample distribution by measuring 2q times each

average video.
Get training quantum register by sampling the average

video using the class distribution.
end for
Reduce a new video by sampling using the class distribu-
tions.
Classify by taking the inner product estimation and setting
class = argmax

(
⟨v1|V1⟩ , . . . , ⟨vk|Vk⟩

)
.

We then measure the ancilla until we find it at the state |1⟩α.
The frame register, then, will be at the state |q1⟩ − |q2⟩. This
is now stored again in the QRAM for further processing.

C. Repeat (A–B) for all the frames of each video
averaging over all training videos for each class. We repeat
the previous steps until all difference frames of all training
videos are stored in the QRAM. An average difference-video is
then calculated for each class: diff-video1, . . . , diff-videok by
taking the average of the amplitudes of all quantum registers
as they are stored in the QRAM.

D. Load average videos and perform 2q measurements
to get a distribution for each class. We load the k average
difference videos to quantum registers of size N×N×T . We
measure 2q times to get a distribution—with replacement—
that represents the most important pixels from all frames, as
these are the pixels that have the highest amplitudes. This
creates a weighted distribution of the most important pixels
for each class of videos. Since the amplitudes have been
calculated by the differences between successive frames, a low
amplitude means that there is no significant change between
the frames whereas a high amplitude means that there is
significant difference between the successive frames. At the
end of this procedure we have k distributions of 2q pixel-
coordinates.

E. Use the distributions and the average videos to
produce a training quantum register for each class. Using
the class distributions we convert each average video to a
quantum register using q qubits. All pixels not belonging to
the distributions are ignored. We produce k training quantum
registers |v1⟩ , . . . , |vk⟩.

F. Classify a new video by reducing it using the dis-
tributions and performing an inner product estimation.
To classify a new video we use the class distributions to
convert it to a quantum register of q qubits. We keep as
amplitudes of the video the pixels that belong to the class

distributions and ignore all other pixels. For each video we
produce k test quantum registers |V1⟩ , . . . , |Vk⟩. We use the
inner product estimation subroutine to calculate the k inner
products: ⟨v1|V1⟩ , . . . , ⟨vk|Vk⟩. We assign the video to the
class:

class = argmax
(
⟨v1|V1⟩ , . . . , ⟨vk|Vk⟩

)
.

A. Effect of the number of qubits in performance and com-
parison to a classical algorithm.

The number of qubits q used in the algorithm affects the
performance of the sampling steps (D, E) and the classification
step (F). Performances of steps A, B and D depend mainly on
the size of the videos.

Since the “difference” transform can be performed effi-
ciently at the same time as the QRAM storing [16], the time
of steps A and B collectively is O(f(K)), where f(n) is a
function that gives the time of the data-loading procedure and
K = N × N × T is the size of each video. At the moment
it seems that a relation of O(f(n)) ∼ O(n) is unavoidable at
best [9]. Step C, then, iterates steps A and B for each of the
kM videos of the training dataset resulting in total runtime of
O(kMf(K)) for steps A-C.

Steps D-E are the core of the “traininng” process. The
sampling procedure of step D consists of loading the k average
difference videos and performing Q = 2q measurements.
Step E essentially just stores the reduced Q-sized versions
of the k average difference videos and this can be performed
concurrently with step D. Since a measurement is, in general,
a linear process we can assume that the total runtime of steps
D-E is O(k(f(K) +Q)).

Finally, step F performs the actual loading and classification
of a reduced video. The runtime for this step is set as O((k+
1)f(Q)+g(Q)), where g(n) is some function that models the
runtime of the classification procedure. It is presumed that this
function would be much faster than a corresponding classical
function (g′(n)), otherwise there would be no benefit on using
the quantum version to begin with. The simplistic g that we
use here might be O(g(n)) ∼ O(

√
log(n)) [18], [19]. It is

also a core assumption of this work, as stated earlier, that the
function f(n)—converting classical data to quantum data—
models a process that has worse runtime than the classification
process: O(f(n)) > O(g(n)).

Table I summarizes the time of the algorithm and how it
compares to the classical/quantum cases with/without a data
reduction procedure. Classification with the quantum algo-
rithm with reduction is much faster than one with the quantum
algorithm without reduction since Q < K ⇒ O(f(Q) +
g(Q)) < O(f(K) + g(K)). On the other hand classification
using the quantum algorithm without reduction might not be
faster than using the classical algorithm when the quantum
data-loading is expensive, i.e., when O(f(n)) > O(g(n)),
even if the core of the classification function is more efficient
in the quantum case: O(g(n)) < O(g′(n)) since this condition
alone can not guarantee that O(f(K) + g(K)) < O(g′(K)).



Fig. 1. Schematic of the algorithm. (A) Convert training set to quantum states. (B) Transform and store in a QRAM. (C) Repeat (A–B) and keep average of
each class. (D) Perform 2q measurements on the averages of each class. (E) Use measurement results to produce a training quantum register for each class.
(F) Perform inner product estimation. Classify to best match.

Step Quantum w/ reduction Classical w/ reduction Quantum Classical

A-B O(f(K)) - - -
C O(kM) ∗ (A-B) - - -

D-E O(k(f(K) +Q)) O(kM(Q+K)) O(kMf(K) + training) O(training)
F O((k + 1)f(Q) + g(Q)) O(g′(Q)) O(f(K) + g(K)) O(g′(K))

Total O(Mf(K) +Q+ f(Q) + g(Q)) O(M(Q+K) + g′(Q)) O(Mf(K) + g(K)) O(g′(K))

TABLE I
COMPARISON OF EXECUTION TIME FOR A CLASSICAL/QUANTUM CLASSIFICATION ALGORITHM WITH/WITHOUT A DATA REDUCTION STEP. STEPS A-E

ARE THE DATA LOADING, REDUCTION AND TRAINING; STEP F IS PREDICTION. K = N ×N × T IS THE VIDEO SIZE OF THE INITIAL DATASET, Q = 2q IS
THE “VIDEO” SIZE OF THE REDUCED DATASET AND M IS THE SIZE (NUMBER OF “VIDEOS”) OF THE TRAINING SET FOR EACH ONE OF THE k CLASSES.

f, g, g′ ARE EXECUTION TIME FUNCTIONS f : QUANTUM DATA-LOADING, g, g′ : QUANTUM/CLASSICAL CLASSIFICATION. O(g(n)) < O(g′(n)) IS
ASSUMED, OTHERWISE THE CLASSICAL WOULD BE THE CLEAR CHOICE.



IV. EXPERIMENTAL RESULTS

To showcase that the data reduction step retains enough
information so that a quantum algorithm may then efficiently
process the reduced data we evaluated the proposed algorithm
on a sample video dataset.

Dataset and pre-processing We evaluate the proposed
algorithm using a small subset of the “20BN-jester Dataset
V1” that contains labeled video clips showing humans per-
forming predefined hand gestures [20]. We crop and down-
scale each video so that all frames are 64×64 pixels and
all videos 32 frames long N = 64, T = 32. We perform
the simulations using two (“Swiping Left”, “Pulling Hand
In”), three (“Swiping Left”, “Pulling Hand In”, “Pushing
Hand Away”) and four (“Swiping Left”, “Pulling Hand In”,
“Pushing Hand Away”, “Swiping Right”) of the available
classes (k = 2, 3, 4). We used training sets of sizes M × k
for values M = 20, 40, 60, 80, 120. We encode the reduced
data using q qubits for values q = [4..17]. We stress that the
actual data reduction is logarithmic with the number of qubits
as shown in Figure 2a. Encoding a video using q = 4 qubits
corresponds to a (64 ∗ 64 ∗ 32)/24 = 8192 reduction.

Simulation For each combination of the parameters (train-
ing set size, number of classes, number of qubits that encode
the reduced data) we simulated the quantum procedures. We
run the simulations for at least 100 iterations and averaged out
the results.

Results In Figures 2b,2c and 2d we report the accuracy
achieved for each simulation case. We observe that in all cases
there is enough information extracted for meaningful video
classification even for as few as 10 qubits, for appropriate
training sizes. A quantum register of q = 10 qubits encodes
210 = 1024 pixels, corresponding to just 210/(64×64×32) ≈
0.8% of the initial video. This is a significant reduction. It
appears that after approximately 13 qubits no much more
information is extracted. We have to assume that this is at least
partly due to our use of a naive classification method as one
would expect that for a non-reduced dataset (corresponding to
q = 17) higher values of accuracy should be achievable.

The training size also plays a crucial role. For training sizes
of less than 40 videos per class the classification accuracy was
very low. As the training size increased so did, in general, the
classification accuracy. Exceptions to this were observed as
k became larger and we hypothesize this is due to the large
similarities between the classes. The classes (“Swiping Left”,
“Swiping Right”) and (“Pulling Hand In”, “Pushing Hand
Away”) are—in practice—time-reversed versions of each other
(i.e. a “Pulling Hand In” video played in reverse could be
classified as “Pushing Hand Away”) On the other hand, it is a
strong point of the proposed method that it can accurately
discriminate between these very time-symmetric classes of
videos.

V. DISCUSSION

The results obtained suggest that a very small number
of qubits are able to contain enough information so that
videos can be successfully classified. Even with the naive

classification method that we employed at the classification
step, the procedure achieved high accuracy values, with a
large data reduction and high performance. Even at q = 5
qubits there is a statistically significant deviation from random-
choice classification showing that meaningful information was
extracted using just 0.02% of the initial video, corresponding
to reduction of the video size by a factor of 4000. The quantum
method used is therefore capable of accurately identifying the
most significant pixels using a very efficient procedure.

There are many ways that the above results could be
improved. A better classification method, either classical or
quantum, is an obvious first step as the method we employed as
proof of concept is very simplistic. A more accurate extraction
of the significant bits could also be achieved by more detailed
methods; for example, by using cross-validation in place of
the simple video averaging.

Extending this method to different datasets (e.g. time series
data or 3D image data) or to different outcomes (e.g. forecast-
ing or object detection) should also be straightforward. We
believe that applicability of this method to different domains
is worth investigating.

Another aspect worth exploring is the accuracy plateau that
is observed after using 12 qubits. This might be coincidental to
the naive classification method that we employ here but other
sources should be investigated (e.g. the existence of barren
plateaus).

Finally, as this method uses very few quantum operations
and a few quantum bits, it would be straightforward to
implement it on a real quantum device such as on an IBM
qpu. Thus, empirical timing results could be considered and
compared to their classical counterparts.
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