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Abstract

Adversarial attacks have become a critical threat to the
security and reliability of machine learning models. We pro-
pose a solution to the problem of defending against adver-
sarial attacks using a deep Denoising Auto Encoder (DAE).
The proposed DAE is trained to enforce orthogonality be-
tween the noise and the range space of its output in each
layer of the encoder’s chain. Furthermore, the pseudoin-
verse decoder of the DAE is designed to ensure that the
reconstructed image and the null space of its intermedi-
ate representations in each layer of the chain maintain or-
thogonality as it progresses from the target space to the
latent space. The denoising problem is formulated as an
equality constrained optimization problem, which is solved
by finding the stationary points of the Lagrangian func-
tion. The noisy data are generated by adding realizations of
multiple random noise distributions to pristine data during
DAE training, resulting in excellent denoising performance.
We compare the performance of our full weights and tied-
weights DAEs, showing that the latter not only has half the
complexity of the former, but also outperforms the former in
denoising and in strong adversarial attacks. To demonstrate
the effectiveness of the proposed solution we evaluate our
networks against recent works in the literature, specifically
those focusing on defending against adversarial attacks.

1. Introduction

The problem of correctly classifying unlabeled data, es-
pecially in the domain of image processing, is an interesting
one. Alongside the flourishing of classification techniques,
mainly with the utilization and progress of deep learning, a
new set of attacks [8], [25], [4], [14], [11], [6], [16] have
been proposed, that aim at exposing the fragility of classi-
fication schemes. These attacks focus on adding a pertur-
bation on the test unlabeled data, during inference, to force
the trained classifiers at misinterpreting them and predict-
ing a false label. The perturbation that is added to the test

data usually is limited to have small amount of energy, mea-
sured by its norm, while maximizing the effect of the attack
confirmed by the drop in classification accuracy.

As a means to defend against attacks on the classifica-
tion accuracy, we can view the problem at hand as a noise
attack, where the tampered image consists of the original
data with added noise of unknown distribution. Denoising
systems, particularly DAEs, have demonstrated significant
success in extracting valuable information from noisy data
and reconstructing clean data [7]. This has been observed
in various domains where the noise in the data is caused
by adverse data acquisition conditions or faulty acquisition
systems. Additionally DAEs can in fact boost the perfor-
mance of subsequent classifiers, in a purely unsupervised
fashion [28]. In [27] the authors propose a training princi-
ple for unsupervised learning of DAEs that is based on the
idea of making the learned representations robust to partial
corruption of the input pattern. These DAEs can be stacked
to initialize deep architectures.

In this paper we try to tackle such attacks with a sim-
ple defence mechanism, which assumes no prior knowledge
of the tested attack scheme, thus adopting the term attack-
agnostic and without utilizing any form of adversarial train-
ing (e.g., [8] [21]) or ensemble adversarial training (e.g.,
[25]) for the defender or the classifier. The defence mecha-
nism aims at modeling the problem of classifying tempered
data, by hypothesizing that a tempered image can be seen
as a noisy perturbation of the pristine one and thus, we can
utilize a denoising mechanism that is proven to be robust at
such modeling.

2. Related work
The most effective tampering methods against trainable

classifiers, are the adversarial attacks [23]. Adversarial at-
tacks are not only contained within the context of affect-
ing the classification accuracy. Malicious individuals can
target machine learning systems during inference by tam-
pering with the input data [2]. These systems can affect
neural networks in various conditions, where depending on



the level of prior knowledge of the classifier’s weights and
architecture, or even the training data, adversarial attack se-
tups can be categorized as white-box, semi-white-box (or
gray-box) and black-box.

To defend against adversarial attacks on classification
systems many defence mechanisms have been proposed so
far [25], [8], [14], [24], [29], [32], [15], [19], [22].

Most notably in [18] authors empirically show that in
a new training technique for the classifiers, called distil-
lation [9], the model is less susceptible to adversarial in-
puts. The classification architecture consists of two identi-
cal networks, where each one of them produces “soft” and
“hard” labels. The “soft” labels produced from the first net-
work are fed as input to the second network, whose final
layer is a modified version of softmax, to achieve the same
level of accuracy. However such defence mechanisms, with
the recent advancement in adversarial attacks, can be easily
avoided [17], [4].

One of the most famous adversarial attacks of recent
years is produced by a generative neural network known as
AdvGAN [30]. AdvGAN is trained in an adversarial fash-
ion to produce noise perturbations with a small energy, that
when added to pristine data, degrades drastically the accu-
racy of well performing classifiers. The architecture of Ad-
vGAN consists of a generator which takes as input a pristine
image data and produces the noise perturbation. The pertur-
bation is added to the original image and the result is passed
to the system’s discriminator. The two networks are trained
in an adversarial fashion, such that the resulting adversaries
are not typically perceived as contaminated by the human
eye, while simultaneously the targeted classifier performs
poorly.

Some more recent works on defenses against adversar-
ial attacks are presented in [10, 13, 12]. Specifically, in
[10], the authors produce per-pixel deep features and use
the features in the neighborhood of query pixel for predict-
ing the clean RGB value. In [13] the authors comprise two
components, an optimized friendly noise that is generated to
maximally perturb examples without degrading the perfor-
mance, and a randomly varying noise component. Finally in
[12], the authors learn defense transformations to counter-
attack the adversarial examples by parameterizing the affine
transformations and exploiting the boundary information of
DNNs.

DAEs have already been used as a defence mechanism
against adversarial attacks. Authors in [1], propose to add
a deep denoising sparse autoencoder (DDSA) as a pre-
processing block before any classification model. In their
proposed scheme a sparsity constraint is added to the Fully
Connected (FC) layers of the DDSA block, to force neu-
rons that produce the latent output to be inactive most of the
time, in order to extract only meaningful and relevant fea-
tures. Specifically, the sparsity constraint allows the activa-
tions of hidden units to be equal to some target activation

such as the one of the pristine data.
In [24] a use of Probabilistic Adversarial Robustness

(PAR) as a fundamental approach to neutralize adversarial
attacks is proposed. The concept is to utilize the applica-
tion loss function to guide the probabilistic model in pro-
jecting adversarial examples to the adversarial-free zones.
The PAR framework and its implementation via ShieldNets
is designed to provide proactive protection to an existing
fixed model.

Adopting the pipeline proposed in [1] (lower branch
shown in Figure 1) for fighting the adversarial attacks, in
this work we propose the use of a DAE trained such that,
on average, in each layer of the encoder’s chain the noise
is enforced to be orthogonal to the output’s range. More-
over, the pseudoinverse decoder of the DAE is defined and
in each layer of its chain the reconstructed image and its im-
ages as the chain proceeds from the target space to the latent
one, is enforced, on average, to be orthogonal to the output’s
null-space. The solution is based on an equality constrained
optimization problem thus admitting the use of Lagrange
multipliers based techniques. For the training of the DAE,
the noisy data is generated by adding to the pristine data
realizations of multiple random noise distributions (upper
branch in the first block shown in Figure 1). Imposing the
proposed constraints, we have trained full weights and tied-
weights DAEs and the later not only has half the complexity
of the former but shows significant improvements in its per-
formance in both denoising and the adversarial attack.

3. Problem formulation
It is well known that the aim of a DAE is to learn

lower-dimensional ”noise free” representations of higher-
dimensional noisy data, and to remap them onto a space
of the same dimensionality of the original ones. This is
achieved by distilling or capturing the most important parts
of the attacked (noisy) input images through the encoder
and then remapping them, via the decoder, into a domain
of the same dimensionality that in our case is a manifold
that contains the pristine images. Let us formally define,
with the help of Figure 2, the problem we are interested in,
that can be summarized as follows: We are given two mul-
tivariate Random Variables (RVs). The first one belongs
to the source domain S and follows a multivariate proba-
bility density gXw(x) and the second belongs to the target
domain T with the multivariate density gX (x), which is of
the same dimensionality with gXw(x) and is the pdf of the
pristine images. The most interesting and difficult denois-
ing problems arise when the density function gXw(x) is un-
known. On the other hand the density gX (x) in most cases
is considered known. Our goal is to find two (2) determin-
istic transformations E(.) and D(.) so that by applying the
following composition of transformations:

X = D
(
E(Xw)

)
(1)



Figure 1. The pipeline of the training-testing & adversarial attack complete process, consisting of the training & adversarial attack blocks
(a), the defence system (b) and the classifier under attack (c)

the RV Xw = X + W , that describes the noisy data, to
be transformed onto the RV X , whose distribution should
be the target density gX (x) of the pristine data. Of course
one may wonder whether the proposed problem enjoys any
solution, namely, whether indeed there exists a composition
of transformations D

(
E(x)

)
capable of transforming the

RV Xw into X with the former following the source density
gXw(x) and the latter the target density gX (x). The problem
of transforming random vectors has been analyzed in [3],
where existence is shown under general conditions.

We are going to limit the class of permissible trans-
formations E(.), D(.) into the class of the deep Autoen-
coders. Therefore the transformation E(.) will be replaced
by E(X ; PE) while D(.) by D(Z; PD) where PE , PD

contain the parameters of the two DAE components. More
formally, let:

Z = E(Xw; PE) : S ⊆ [0, 1]N → L ⊆ RM and
X = D(Z; PD) : L ⊆ RM → T ⊆ [0, 1]N (2)

be the encoder and decoder of the DAE respectively with
Xw, Z, X random variables (RVs) of the source S, latent
L and target domain T respectively, and PE , PD the sets of
the encoder’s and decoder’s parameters respectively. Each
one of the above mentioned sets contains the weights W , as
well as the parameters α of the activation functions of each
layer of the network, that is:

PI =
{
WI , FI

}
, with WI =

{
WIl

}L

l=1
and

FI =
{
fIl( . ;αIl)

}L−1

l=1
(3)

with the subscript I taking values from the set SI =
{E,D}. For a detailed description of the AE’s architecture,
please see Section 4. Note that the encoder of the DAE can
be considered as a mapping of the source domain S, which,

as we said, in our case is the domain of the contaminated
images, onto the latent space L; the decoder is a mapping
of the L one onto the target domain T, which has to coincide
with that of the pristine images.

Having defined the DAE we can concentrate ourselves
to a critical issue that is related to the invertibility of the
decoder. More specifically, under some mild assumptions,
as we are going to see, we can define an inverse mapping
that can be used for solving, in an efficient way, the image
denoising problem via the use of DAE. This issue is inves-
tigated in the following proposition.
Proposition 1: Let WD, FD be the sets contained in the
decoder’s parameters set PD defined in Eq. (3). If the ac-
tivation functions of set FD are invertible and the tall ma-
trices of set WD are of full column rank we can define the
following pseudoinverse decoder’s mapping defined from
target domain T into the latent space L:

Z̃ = D†(Y;PD†) (4)

with:

WD† =
{
W †

Dl
= (WT

Dl
WDl

)−1WT
Dl

}L

l=1
and

FD−1 =
{
fD−1

l
( . ;αDl

) = f−1
Dl

( . ;αDl
)
}L−1

l=1
. (5)

Proof: The proof is easy and is omitted. □
Note that the above defined mapping is a many-to-one map-
ping. Indeed, if we define the null-manifold of the above
defined mapping by extending the definition of the null-
space1 of a matrix, that is:

N (D†) =
{
x ∈ T

∣∣ D†(x) = 0M ∈ L
}

(6)

1The range and the null-space or kernel of a size N × M matrix
A : RN → RM , denoted by R(A) and N (A) respectively, are defined



we can easily prove our claim. This manifold as well as the
range of the mapping:

R(D†) =
{
x ∈ T

∣∣ D†(x) ̸= 0M ∈ L
}

(7)

will play a vital role in the proposed denoising technique.

4. Deep Autoencoder Architecture

Let us define the encoder and decoder of a deep archi-
tecture Autoencoder. An encoder of deep architecture com-
posed by L-layers, can be defined, in a recursive way, as fol-
lows (for the basic building block of such a system, please
see Figure 2.(a)):

ξ0 = X , ξl = fEl

(
WEl

ξl−1

)
, l = 1, 2, · · · , L− 1

and ξL = WEL
ξL−1. (8)

Note that its first layer coincides with the DAE’s input while
its output feeds the decoder’s input, that is ξL ≡ Z . As it
was mentioned the encoder maps the elements of the source
domain S onto the latent or code space L.

A decoder of similar architecture, can be defined as fol-
lows (for the basic building block of such a system, please
see Figure 2.(b)):

ζ0 = Z, ζl = fDl

(
WDl

ζl−1

)
, l = 1, 2, 3, · · · , L− 1

and ζL = WDL
ζL−1 (9)

with ζL ≡ Y , that is the DAE’s output. Note also that both
the encoder’s and decoder’s outputs ξl, ζl of each layer are
multivariate random variables whose dimensions are speci-
fied by the dimension of the row space of the corresponding
matrix (let say Ml). We also assume that the dimensions of
the encoder’s cascaded layers as well as the decoder’s ones,
are of the appropriate size so that the connectivity between
the layers to be ensured. The pseudoinverse-decoder of
the above defined decoder, whose parameters are already
defined in proposition 1, will be a useful tool for solving
the problem at hand, and can be defined as follows:

ζ̃0 = Y,

ζ̃l = f−1
DL−l

(
W †

DL+1−l
ζ̃l−1

)
, l = 1, 2, · · · , L− 1,

and ζ̃L = W †
D1

ζ̃L−1 ≡ Z̃. (10)

We must stress at this point that this mapping, as we men-
tioned, is many-to-one, and this is not desirable.

by the following relations:

R(A) =
{
x ∈ RN

∣∣ Ax ̸= 0 ∈ RM
}
,

N (A) =
{
x ∈ RN

∣∣ Ax = 0 ∈ RM
}

.

5. Proposed Training Methodology
As it is explained in details in the previous section, in a

2L-layer autoencoder, the encoder and the decoder can be
considered as composition machines. Thus, via the encoder
is created a chain of L multivariate RVs whose dimensions,
are reduced as we proceed from the source domain to the
latent one due to the bottleneck effect. Due to this dimen-
sionality reduction and using the notion of the null-space
defined in Eq. (6) of Section 3, the resulting mapping is
many-to-one. On the decoder side there is a ”mirror” chain
where, the dimensionality of the RVs increases as we pro-
ceed from the latent space to the target, so the achieved
mapping is one-to-many.

Ideally, we would like each sample of RV Xr that consti-
tutes the representation of the denoised (reconstructed) im-
ages to be orthogonal to the null-space of each link of the
chain formed by the pseudoinverse decoder’s mapping. On
the other hand, each sample of the RV Xw−Xr, that consti-
tutes the total error, that is the noise plus the reconstruction
error, ideally should be orthogonal to the range of each link
(layer’s output) of the chain formed by the encoder.

Note that if both the above mentioned constraints are im-
posed during the training phase of the net, the noise will be
mapped into the null-space of the matrices WEl

while the
reconstructed images into the range of matrices WDl

re-
spectively. However, since it is not possible to be achieved
for all the samples, we are going to achieve it in the mean
sense.

The above mentioned requirements are general and do
not impose any kind of symmetry restriction. Indeed, in the
next subsection we formulate a fully parameterized DAE by
imposing the aforementioned orthogonality requirements
on the encoder and the pseudoinverse decoder.

6. Deep DAE
In this section we are going to impose the orthogonal-

ity requirements on the encoder and the pseudoinverse de-
coder and formulate the training problem of a full and a
tied-weights parameters DAE.

6.1. Full Parameters Deep DAE
To this end, let us express the necessary orthogonal-

ity constraints as functions of its parameters. Let VIl =
[VIlR

, VIlN
], l = 1, 2, · · · , L be the orthonormal bases of

RNl , l = 1, 2, · · · , L resulting from the SVD of matrices
WIl , l = 1, 2, · · · , L with the subscript I taking values
from the set {E, D†}, that is the matrices of the encoder
and the pseudoinverse decoder and matrices VIlR

, VIlN
corresponding to the bases of the range and the null-space
of WIl respectively. In addition, let ξ̄l, l = 0, 1, · · · , L the
sequence of RVs that are produced by the encoder using
the Eq. (8) in the paper when the RV Xw − Xr is fed in its
input; RV Xw constitutes the representation of the attacked



Figure 2. The building blocks of the Encoder (a) and the Decoder (b) of an Autoencoder

images, whose pdf is unknown, and Xr the reconstruction
of the attacked image; the Xr pdf, ideally, should coincide
with that of the pristine, which either is known or can be
estimated from the given training set of the pristine images.
Finally, let ζ̃l, , l = 0, 1, 2, · · · , L the sequence of RVs that
are produced by the pseudoinverse decoder, defined in Eq.
(10) when the RV Xr is fed in its input.

Having defined all the necessary quantities, in the next
lemma we present the constraints that must be satisfied by
the weights of the DAE to enforce the desired orthogonality.

Lemma 1: Let VElR
be a base of the range of the encoder

matrix WEl
and VD†

lN
a base of the null-space of the pseu-

doinverse decoder matrix WD†
l
. Then, the following con-

straints:

V T
ElR

Eξ̄l−1∼gξ̄l−1

[
ξ̄l−1

]
= 0Ml

V T
D†

lN
Eζ̃l−1∼gζ̃l−1

[
ζ̃l−1

]
= 0Nl−Ml

, l = 1, 2, · · · , L

(11)

with Eξ̄l−1∼gξ̄l−1
[.] denoting the expectation operator over

ξ̄l−1 and Eζ̃l−1∼gζ̃l−1

[.] denoting the expectation opera-

tor over ζ̃l−1, which ensure, on average, that the noise is
mapped into the noise subspace and the reconstructed im-
ages into the signal one.

□

Based on Lemma 1, we propose the following optimiza-
tion problem:

min
PE , PD

EX∼gX

[
||X − Xr||22

]
(12)

s.t.

L∑
l=1

||V T
ElR

Eξ̄l−1∼gξ̄l−1

[
ξ̄l−1

]
||22 = 0,

L∑
l=1

||V T
D†

lN
Eζ̃l−1∼gζ̃l−1

[
ζ̃l−1

]
||22 = 0,

l = 1, 2, · · · , L

for solving the denoising and adversarial attack problem.
We must stress at this point that in the constrained opti-

mization (Eq. (12)), the first equality constraint refers to the
encoder’s weights while the other to the pseudoinverse de-
coder ones, and consequently the computational cost of its

solution is heavier since the computation of the SVD of both
of the above mentioned matrices is needed. For the solution
of the above defined problem we follow a similar procedure
with that presented in the main paper for the solution of the
tied-weights Deep DAE counterpart. This concludes our
presentation for the full DAE. In the following sub-section
we concentrate ourselves on the tied-weights DAE, which
offers almost the same performance and much smaller pa-
rameter space.

6.2. Tied-Weights Deep DAE
Let us constrain the decoder’s architecture to be the

transpose of the encoder one, that is:

WD =
{
WT

El

}1

l=L
(13)

with T denoting the transpose operator. Then, it is clear that
such a constraint does not only reduce the DAE complexity,
but also has a major impact on the form of the orthogonality
constraints of the minimization problem we are going to de-
fine. More specifically, because of the imposed symmetry
expressed by Eq. (13), the definition of the Moore–Penrose
inverse of a matrix and the definition of the pseudoinverse
decoder in Eq. (10), the needed bases for the null-space and
range in each link of the chains, refer to the same weight
matrix and this drastically reduces the computational cost
for the training of the net. All those issues are presented by
the following lemma.
Lemma 2: Let VEl

= [VElR
, VElN

], l = 1, 2, · · · , L be
the orthonormal bases of RNl , l = 1, 2, · · · , L resulting
from the SVD of matrices WEl

,of the encoder, where ma-
trices VElR

, VElN
are bases of the range and null-space of

weights matrices WEl
of the encoder and ξ̄l = ξl − ζ̃l with

ξl, ζ̃l, l = 0, 1, · · · , L the sequences of RVs, produced by
the encoder and inverse decoder. Then, the following con-
straints hold:

V T
ElR

Eξ̄l−1∼gξ̄l−1

[
ξ̄l−1

]
= 0Ml

V T
ElN

Eζ̃l−1∼gζ̃l−1

[
ζ̃l−1

]
= 0Nl−Ml

, l = 1, 2, · · · , L

(14)

with Eξ̄l−1∼gξ̄l−1
[.] and Eζ̃l−1∼gζ̃l−1

[.] denoting the expec-

tation operators over the RVs ξ̄l−1 and ζ̃l−1 in the l−th layer



of the encoder. Note that in each layer of the AE this en-
sures, on average, the mapping of the transformed noise into
the noise subspace and of the transformed reconstructed
images into the signal subspace. In particular, note that for
l = 1, on average, the mapping of the input noise into the
noise subspace and the reconstructed image into the signal
subspace is ensured.

□
By employing the MSE of the reconstruction as our cost

function and using Lemma 2, we define the following con-
strained optimization problem:

min
PE

EX∼gX

[
||X − Xr||22

]
(15)

s.t.

L∑
l=1

||V T
ElR

Eξ̄l−1∼gξ̄l−1

[
ξ̄l−1

]
||22 = 0 and

L∑
l=1

||V T
ElN

Eζ̃l−1∼gζ̃l−1

[
ζ̃l−1

]
||22 = 0

for solving the problem at hand, with the equality con-
straints imposing the desired orthogonality.
Note that in the optimization problem, only the encoder’s
parameter set PE is needed, thus reducing drastically the
computational burden for solving the problem.

It is important to stress at this point that in order to make
the solution of the problem easier the

∑L
l=1 Nl constraints

defined in Lemma 2 have been replaced by just two. Since
the optimization problem (Eq. (15)) is a constrained opti-
mization problem with equality constraints, we can define
the following Lagrangian function:

L(PE , λE , λD) = EX∼gX

[
||X − Xr||22

]
+ λE

L∑
l=1

||V T
ElR

Eξ̄l−1∼gξ̄l−1

[
ξ̄l−1

]
||22

+ λD

L∑
l=1

||V T
ElN

Eζ̃l−1∼gζ̃l−1

[
ζ̃l−1

]
||22

(16)

with λE , λD denoting the Lagrange multipliers, and solve
the above defined unconstrained optimization problem by
finding the stationary points of the Lagrangian function de-
fined in Eq. (16) [3], [5], [20].
Data-driven approach

It is clear that in order to solve the above defined op-
timization problem the pdfs gξ̄l−1

(.) and gζ̃l−1
(.), l =

1, 2, · · · , L must be known. However, in a data-driven
version of the problem two collections of training data
{xwi}Ki=1 and {xi}Ki=1 are given instead, each one contain-
ing K samples of RV Xw and X respectively, and the ex-
pected values are estimated using the large numbers’ law
from those sets.

7. Experiments
In this section we present our experimental results when

dealing with the problem of defending against the adver-
saries produced from the AdvGAN [30], FGSM [8], R-
FGSM [25], C&W [4], PGD [14], BIM [11]. MI-FGSM [6]
and DeepFool [16] frameworks and we compare our results
with the results obtained by the state-of-the-art in [1] & [24]
and the techniques contained therein on the MNIST and
Fashion-MNIST datasets. Additional results for the prob-
lem of denoising, as well as the experimental setup, archi-
tectures of the classifier models and the DAEs are described
in the supplementary material for the sake of space.

7.1. Evaluating the DAEs against adversarial at-
tacks on the MNIST dataset

In this setup we used our attack-agnostic trained DAEs to
evaluate the capabilities of the proposed training, in the task
of defending against various adversarial attacks, namely
FGSM [8], R-FGSM [25] and PGD [14] frameworks. To
validate our proposed defences we have firstly compared
their performances in terms of the classification accuracy
against the DDSA [1] framework. This framework follows
similar concepts in terms of architecture and defence strat-
egy to ours, thus justifying the comparison with what could
be considered an older work in the literature, by highlight-
ing that our network can achieve better results with less
computational cost and network size in terms of parameters,
with the performance of the proposed tied-weights DAE be-
ing the most prominent. As we can see from the contents of
Table 1, the proposed DAEs outperform DDSA for most
of the attacks while simultaneously utilizing less than half
the parameters. In the case of the FGSM we can see that
our network falls behind DDSA, but still performs adequate
in this attack, without losing the ability to generalize well
over different attacks and in different scenarios, which is
the main purpose of a defence module.

Additionally we must stress at this point that the perfor-
mance of the two DAE architectures, namely full and tied-
weights, differs significantly. In the case of the tied-weights
DAE we achieve from 1.5% to 3.5% increase in the classi-
fication accuracy, even with half the model parameters (and
subsequently degrees of freedom). The architecture of the
DAEs consists of three fully connected layers in the encoder
and the decoder additionally, summing up to six total lay-
ers. We used leaky ReLUs as nonlinearities in the encoder
with learnable parameters for the slope in the negative part
and their inverse counterparts as the nonlinearities in the
decoder. In the case of the tied-weights DAE the decoder
consists of the transposed parameters of the encoder.

We also tested our conditioned defenders against the fa-
mous AdvGAN [30] attack and present our results. In Fig-
ure 3, we can see a set of 64 non cherry-picked images from
the MNIST dataset, their AdvGAN contaminated counter-
parts, as well as the results of the denoising when we feed



Table 1. Classification accuracies under various black-box and gray-box attacks of the proposed DAEs on MNIST dataset, compared to
[1]. *:Ours

Class of Attack black-box gray-box
Attack FGSM R-FGSM PGD FGSM R-FGSM PGD

*Full DAE 84.58 88.66 94.08 83.73 88.12 93.43
*Full DAE with Constraints 85.18 88.95 93.97 84.41 88.22 93.97

*Tied-weights DAE 82.93 88.04 93.6 82.12 87.81 93.09
*Tied-weights DAE with Constraints 85.1 89.59 94.49 83.57 89.09 94.12

DDSA [1] 90.2 88.9 91.1 89.9 84.9 88.9

the adversaries in our trained networks. The DAEs work
well on reverting the effects of the adversarial attack on the
images and this is evident when we see the classification
results on the denoised images.

The AdvGAN attack reduced the classifier accuracy to
1.3%. By first denoising the adversaries, we raised the
accuracy back to 90.5% in the case of the full DAE and
93.5% in the case of the tied-weights DAE. In addition,
when training the DAEs without the proposed constraints,
the classification accuracies were 89% for the full weighs
and 91.5% for the tied-weights DAE respectively, indicat-
ing that the added constraints improve the performance of
DAEs against the adversarial attacks. In [30], authors eval-
uate the AdvGAN framework against various state-of-the-
art defences on MNIST, namely standard FGSM adversarial
training [8], ensemble adversarial training [25] and iterative
training [14], in the context of a black-box attack scenario.
It is clear that, in this context, our proposed defence outper-
forms the proposed techniques (see Table 2).

Table 2. Adversarial Success Rate (ASR) of the proposed DAEs
vs state-of-the-art defences. *:Ours

Defences AdvGAN
Adversarial training [8] 11.5%

Ensemble adversarial training [25] 10.3%
Iterative training [14] 12.2%

*Full DAE with Constraints 9.5 %
*Tied-weights DAE with Constraints 6.5%

7.2. Evaluating the DAEs against adversarial at-
tacks on the Fashion-MNIST dataset

Next up, to show how our proposed defence can general-
ize in more complex scenarios, we tested our defence on the
fashion-MNIST dataset [31]. The dataset includes images
that are comparable in size to the MNIST dataset, along
with a similar number of training and testing images, as well
as classes. The main difference is that, this dataset consists

Table 3. Classification accuracies and complexities of the two
compared classifiers

Classifier Accuracy Number of Parameters
Resnet 93.51% 34k
Ours 90.08% 13.5k

of images with richer texture, thus defending against ad-
versarial attacks performed on this dataset poses a greater
challenge. In this experiment, we also added two convo-
lutional layers before the encoder and two layers after the
decoder. The purpose of this decision is to first extend the
reconstruction capabilities of our DAE in order to follow up
with the more complex dataset and second to highlight that
our technique works not only on pixel values, but also on
features produced by the convolutional layers.

In Figure 4 we can see the effects of our tied-weights de-
fender on the tampered images from the FGSM attack. Ad-
ditional results comparing the use of full and tied-weights
DAEs trained with and without the proposed constraints in
different attack scenarios can also be found in the supple-
mentary material, justifying the use of our tied-weights con-
strained DAE in the following sections.

To compare our work with state-of-the-art defences on
this dataset, we selected a few recent publications and ran
our experiments on similar setups for fairness of compar-
ison. To our knowledge, ShieldNets [24] shows the best
performance up to this day on the fashion-MNIST dataset.
The difference between the state-of-the-art results and ours
(Table 4) can be attributed to the complexity of the Resnet
based classifier showcased by the achieved classification ac-
curacy on the test set, as we can see from Table 3. Addi-
tionally, besides the difference in classifier complexity and
pristine accuracy, ShieldNets utilize the PixelCNN [26] ar-
chitecture, which consists of 15 layers (∼ 1M parameters),
compared to our tied-weights DAE of 6 layers (∼ 320k pa-
rameters).

While our results are lower than the ones presented in



(a) (b) (c) (d)
Figure 3. The performance of the under comparison techniques on an adversarial attacked set (b) of the set of the pristine MNIST images
shown in (a). Full parameters (c) and tied-weights DAE (d).

(a) (b) (c)

Figure 4. 64 Non-cherry picked images from fashion-MNIST (a). Original (b) with adversarial noise from FGSM (c) Defended.

Table 4. Comparison of the defences against various attacks on Fashion-MNIST, e=8/25. *:Ours

Network Training Technique FGSM BIM DeepFool CW MI-FGSM

Resnet

Label Smoothing [18] 64.23/36.81 9.76/0.00 22.42/3.37 20.77/4.61 4.25/0.00
Adversarial FGSM [14] 82.49/78.43 44.34/6.46 57.28/11.92 51.03/15.70 39.72/0.00

Pixel Defend [22] 85.00/74.00 83.00/76.00 87.00/87.00 87.00/87.00 NA
ShieldNets [24] 91.59/89.04 91.17/89.74 92.62/90.28 92.66/90.78 90.63/90.47

*CNN *Tied-weights DAE with Constraints 87.54/78.85 87.18/82.69 89.75/89.05 89.74/89.52 85.90/85.21

[24] in terms of classification accuracy on the defended re-
sults, the main takeaway is that, our DAE can generalise
its ability to defend against various attacks and we can also
achieve comparable results to more complex classifier and
defence architectures with simpler solutions.

8. Conclusion

In this study, we proposed a solution to the image de-
noising problem using a deep DAE. Our DAE architecture
enforces orthogonality between noise and intermediate rep-
resentations in the encoder’s chain and between the recon-
structed image and its intermediate representations in the
pseudoinverse decoder. Our proposed solution is based on
an equality constrained optimization problem that uses La-
grange multipliers. We trained both full-weights and tied-
weights DAEs and found that the latter architecture not only

gave significant improvements in denoising and defending
against strong adversarial attacks on two datasets, but was
also much simpler. Both architectures performed well as de-
fenders when trained in an attack-agnostic setup. To further
improve the performance of the proposed solution, its ef-
fects on more complex classification architectures are inves-
tigated. Additionally, we plan to evaluate the effectiveness
of the proposed defenders on more challenging datasets to
ensure their robustness in real-world scenarios. Finally,
we are in the process of finding optimal and memory effi-
cient ways to expand our technique on the more commonly
used convolutional networks. Our study highlights the po-
tential of the proposed DAE architecture as a lightweight
and promising solution for image denoising and defending
against adversarial attacks.
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