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Abstract: The problem of human detection in crowdeenes where people may occlude each other hagdmded
recently using the planar homography constraina imultiple view framework. The foreground objects
detected in each view are projected on a commamegtaan accumulated fashion and then the maxima of
this accumulation are matched to the moving tarddtsvever the superposition of foreground objects
projections on a common plane may create artifabiish can seriously disorientate a human deteggor b
creating false positives. In this work we presemhethod which eliminates those artifacts by usiny o
geometrical information thus contributing to robimtman detection for multiple views. The presented
experimental results validate the proposed approach

1 INTRODUCTION cameras. Inhomogeneous color may also cause
problems if the same target exposes different solor

d in different cameras.

The problem of detecting moving targets in crowde i ,
Several approaches use geometrical constraints,

scenes is one of the most challenging topics in hich X h librat
computer vision mainly due to occlusions. The Which may require either camera calibration or a

employment of target models for tracking using a homography constraint based on the ground plane.
single camera has serious difficulties in cases tha 1h€ 3D methods transform all points, e.g., target
the target is partially or fully occluded (e.g. centroids into the common 3D coordinate system

(Makris, 2007). Therefore several researchers used®Nd perform matching based on the proximity of
multiple cameras to compensate that problem,hose points, e.g., (Kelly, 1995). Alternativelyeth
Having multiple overlapping views increases the €PiPolar constraint is employed, using only the
possibility that the target is visible or less acted ~ relative pose of the cameras, e.g., (Cai, 1999).
in one of those views. Several recent works exploit the fact that the
Regarding the target matching in overlapping targets move on a common plane, especially for
views, there are several taxonomies of the relatedindoor scenes, e.g., (Eshel, 2008), (Hu, 2006),
methods according to the used features and(Khan, 2006), and (Khan, 2007). The approach that
according to the requirement for camera calibration IS commonly followed in such a framewgrk can be
A popular approach is to consider the targets as"oUghly described by the following stages:

regions and then to use the region features fora) Background subtraction to get moving objects.
matching in multiple views. Color is a popular b) Employment of homography constraint to project
feature and is modeled through color histograms,the foreground regions on a common p|ane_

e.g., (Krumm, 2000) or Gaussian color models, e.g.,¢c) Processing of the projected data to extract the
(Mittal, 2003) However, targets having similar moving targets-the focus of our work.

colors may be poorly matched. Different viewpoints d) Optionally additional processing for matching

and lighting variations may cause the same ta@et t the targets either using templates or color models,
be observed with different colors in different \which will not be further examined here.



Background subtraction includes modeling each foreground pixels (x,y,l)T in each camera. The
pixel's color, e.g., as a Gaussian Mixture. Whateve maxima of this array correspond to ground point
deviates from the model is considered foreground. A positions of the viewed target on the ground plane,
review can be found in (Hall, 2005). that is, the position where the feet touch the gdou

The projection is based on the results from The maxima are filtered out by applying a threshold
previous stage. It calculates offine the that equals the number of cameras in use. To extrac
transformation of a reference ground plane to th,ethe feet blobs, connected component analysis is
plane of each camera through @ homography matrix.nerformed on the filtered ground points. People are
It then .propcts each pixel classified as foregbim detected by grouping feet blobs belonging to the
Fnac(thlaexv '2 ég%ﬁféegg;gla%%ae'g’ ((astr:a?\r(]j,e)(zjo?‘gr same person into clusters. In the following analysi

. ' . the term “object” refers to a collection of blobs i
multiple parallel planes to obtain 3D shape of the h d ol that bel t0 th
monitored targets. In (Eshel, 2008) three planek an € ground piane that belong 1o € same person.

The main aim of the proposed method is to

;hri ﬁ(s);rjlatlon of intensity values for head deéoect efficiently maintain the information contained imet
' attributes of the blobs (size, orientation,

As soon as the projection on the common plane S . ;
takes place the detection of moving targets Startsconnechwty)_m order to group _them Into obj_ecos S
that each object correctly identifies the locataira

(stage c). In (Khan, 2006) the projected foreground person in the ground plane. The object position can

pixels create a synergy map in an accumulator . : ) ;
fashion and the maxima correspond to ground targetthen be back projected into the camera views in

position. This method provided many false positives '?hrgeretrosc?;((t;?(:tclgift(i)czrr??r:l(t)r?e(gﬁg.i:]gtla (;/ggcalsamf
due to intersection of the projected silhouettest th Igffective tpar ot extractiong de end's on the
create undesired maxima. We propose a method fo 9 P

r il
SO " . following issues:
eliminating these false positives using only . . .
geometrical information, thus avoiding the error- 1) Blob assignmentUsually an object consists of

. one or two blobs depending on the walking cycle.
prone color modeling. : C:
: N Thus, the number of blobs that constitute an ohgect
In the next section we present the principles for

the accumulator calculation and the problems thatconstantly chang|r_lg. Therefore, ad_dmg or removing
. . a blob from an object depends on its position @n th
arise. In section 3 we present how we overcome

these issues. In section 4 we present experimentalDlane as well as on the geometrical propertiesief t

. : object itself.
results and section 5 concludes this paper. 2) Blob size The connected component analysis that

is applied to the accumulator may result to large
blobs as a result of morphological merging of two o
2 GROUND PLANE more maxima areas. Figure 1 depicts an example.
ACCUMULATOR 3) Pseudo-blohs The projection of each person's
silhouette in the image plane corresponds to a
In this section we calculate the accumulator, we "Shadow” in the ground plane. The homography
show the problems in approaches based on (Khanfransformation may produce maxima at points of
2006) and we introduce our solution using only Multiple shadow co-occurrences. In Figure 2 blobs 2
geometric information. and 3 denotes two such cases.
The planar homographies are geometric entites ~The following section presents our method
that associate points on different planes. Assumer€garding the above issues.
that a point on the ground plane is expressed as
P, =(X,Y1)" and that the coordinates of this point
on the camera plane aPe=(x,y1)'. The 3 TARGET DETECTION
homographyH is a 3x3 matrix which relate®, and
P. as follows:

P _HP, ) 3.1 Object determination
The homography matrix can be calculated using al€t Us suppose there arg objects in the ground
known pattern, visible from all cameras. From the plane from the previous frame and that each object
previous equation we construct the accumulator by M, [=1...n_, is represented as an Gaussian
simply projecting on the ground plane the



mixture model (GMM) where the probability density
function is composed of a mixture of component

densities 4{,..., 4n}. There arem(!) components in

This case arises in isolated blobs, a typical 8dna
when a new person enters the scene. The creation of
a new object is affected by thresholtds and t;

the |-th object and each one corresponds to aboth of which are application related.

Gaussian distribution that describes the statistica

The above process is repeated for all the blobs in

properties of a maxima subset in the accumulatorthe ground plane. Finally, any objects that have no

array. Let alsong denote the number of blobs in the

blobs assigned to them are eliminated. Otherwise,

ground plane that we want to group into objects and "€ GMM of each objecM, is recalculated based

let s; denote the number of points in bloB;
where j=1...ng. For any point x; €B; the

probability that it belongs to objeddl; is given by

(1)
ol 14 {1)

1

3

p(xi:1)= 2

Typically, the weightP(4;) of each mixture and the
parameter$)(x|/1j ~Nig;j ,Zj)for each component

are unknown and a parameter estimation
methodology is applied to determine them. In the
proposed approach the Expectation Maximization
(EM) algorithm is used to obtain maximum

likelihood estimates of the parameters in the GMM.

For each pointx; € B; an object candidateg; is

calculated as

3)

0

argmaxp(x;;1) if p(x;;l)>t,
G =1 |
I otherwise

Threshold th defines a minimum allowed

probability that some blop belongs to some object
. Let the stochastic vectof; hold the probability
mass functionPr(; =1) regarding thg-th blob, for
all points in the blob. Iffj =argmax(f;) then the
blob B; is added to obje(l&tlfj :

M

i {MIA]_ qu} if max(f;)>tcand; >0 (4)
Thresholdt. designates a minimum proportion of

points in blobB; that must be closer to some object

Mlj
i

In case where any of the two conditions in (4)as n

fulfilled, a new object is created that holds only

blob BJ- , that is

in order to assign the whole blob to this object.

M; =Bjwherel;=n_+1

lj

(5)

on the newly assigned blob points.

3.2 Blob size normalization

Connected component analysis on the maxima of the
accumulator may result to merged components
(blobs) that actually correspond to different objec

as shown in Figure 1. In this case, where the blob
size exceeds a predefined threshold a splitting

process is applied before the object determination

phase in order to break down the blob into several

smaller ones that may then be assimilated by

different objects or even rejected as pseudo-blobs.
In order to split a blobB; into two parts a

Gaussian mixture model (GMM) is used with two
components £, 4;}. Let g and £, denote the

mean and variance of component Blob B is
replaced by two blobsB;j;) and Bj) and each

point X; € B; is assigned to

Bj(k) = {Xi € BJ suchthatdi = k} (6)

where d; denotes the closer component according to
the Mahalanobis distance. The process may be
repeated untilB; is replaced by two or more blobs

with sizes less than threshold

3.3 Pseudo-blob removal

In crowded scenes where people are standing close
to each other, the projection of each person's
silhouette into the accumulator wusing the
homography may cause the appearance of pseudo-
blobs as a result of overlapping shadows in the
ground plane view. It can be noticed that each
shadow in the ground plane corresponds to a person
in the original image viewed from a specific camera
Moreover, there are three shadows for each person
each one starting from the blob(s) that corresgond
the feet. The intersection region of any three
shadows forms a potential pseudo-blob area. Figure
2 depicts a ground plane example that corresponds



to three persons standing in a scene viewed b thre For zer0 value of;, blob ,gj can be rejected as
cameras (see also Figure 3, left column). The white i o . i i
areas correspond to accumulator values equalito 3. PSeudo-blob since it is not visible (in a certain
can be seen that co-linear arrangement of camerglegree, controlled by, ) from any camera. In this
sources with two or more feet blobs results to mutu case, this blob does not participate in the object
shadows overlapping, like blobs 1 and 5. However, determination process described in section 3.1. In
there are cases like blobs 2 and 3 where shadowd-igure 3 the left column depicts the three camera
from blobs 1, 4 and 5 overlap in the middle region views for the same frame as in Figure 2. The right
resulting to pseudo-blobs 2 and 3. column depicts a zoomed area of the feet for the
We propose a method for removing these corresponding foreground  silhouettes. Each
artificial blobs by examining the visibility of eac  horizontal line segment corresponds to the range
blob from the cameras. Specifically, we check if fo ~ o
any blob B;j there are other blobs that conceal it of a blob B; . Thus, for any offset, the visible blob

partially or fully when viewed from the camera. The is the one closer to the bottom of the image.

visibility of blobs can be effectively computed @n
straightforward fashion by back transforming all
blobs from the ground plane to the camera views.4 EXPERIMENTAL RESULTS
Rather than comparing blob-to-camera vicinity in
ground plane polar coordinates, the transformell blo The proposed method has been tested in a
pixels are compared according to their vertical surveillance system installed in our lab that csissi
position in each camera's Cartesian coordinateof three cameras as shown in Fig. 2. Cameras 1 and
system (Figure 3, right column). Specifically, B 2 have been deliberately located in a facing pmsiti

in order to better simulate a real world situation
X where the optimum equidistant installation of 120
k-th camera view. Letrj, = {ijin“'xjmax} denote  gegrees between cameras is barely achieved due to
space limitations. To evaluate our method we have
) o used a sequence of 1650 video frames from each one
current camera  ViEw. Similarly, let  of the three cameras that depict a varying number o
Yjmax= max{xj(y) € Bj} denote the largest of all y- persons entering, walking and exiting the scene.
Table 1 summarizes the detected false positivey (FP
when comparing the original (Khan, 2006) and the
coordinate ak among all blobs witlx in their range  proposed method. The results show that for 2 and 3

denote the transformed pixels of fath blob in the

the set of x-coordinates that blci~q occupies in the

coordinate values. The blob with the greatgstax

of x-coordinates, is given by persons in the scene (when actually overlapping may

_ >{ } ~ occur in the ground plane) the proposed method
y(x)= argmaxy jmax/, VBj : X € 'jx 7 significantly decreases the number of false passitiv

! in the blob detection. Indeed, due to the blob

The visibility of blob |§j from the camera is normalization and pseudo-blob removal processes

the proposed method successfully ignores blobs that
1 - () do not actually belong to any person in the scene.
ViT |r.X| Zy(x) such thaty(x)= | (8) Figure 4 depicts the proposed method's
X xerx efficiency in a complex situation. There are 6 Islob
belonging to 3 objects and person 1 makes a large
stride. As a result his right foot is clearly clode
value of v; ranges from O (no visible at all) up to 1 the feet that correspond to person 2. However, the

(fully visible). The above process is repeatedthr GMM that describes the distribution of blobs

rest of the cameras. An application related thriesho P€1onging to this person's object stretches prgperl
t, can be defined to binarize the decision making. " Order to keep its feet (blobs 1 and 3) togethbe
contours in the lower left subplot denote the

identified objects and their centre correspondh¢o
person's vertical axis. These points are back
projected in the 3 cameras views in order to denote
the intersection point of each person with the gtbu
from O up to the overall number of cameras in use. plane. Figure 5 depicts an even more complicated
case, a few frames later, where both blob

where |x| denotes the cardinality of set. The

Vj = Z(vgc) > tv) for all the cameras ~ (9)

For each blob,\7j is an integer value that ranges



normalization and pseudo-blob removal are applied. Hall D., Nascimento J., Ribeiro P., Andrade E., Mare

Initially there are 4 blobs in the ground plane, of P., Pesnel S., List T., Emonet R., Fisher R. B., Yicto
which, blobs 1 and 2 exceed the threshalé30 J. S., Crowley J. L., 2005. Comparison of target
(upper left drawing). After the blob size detection algorithms using adaptive background

. . . . . models. Inint. Conf. on Computer Visiorpp. 113—
normalization process is applied, the first one is 150

divided into blob 1 and 2 as shown in the lowet lef Khan, S.M., Shah, M., 2006. A multiview approach to

drawing of Figure 5, while the other one is repthce tracking people in crowded scenes using a planar
by blobs 3 to 6. However, blobs 2, 4 and 5 are  homography constraint. IBurop. Conf. on Computer
identified as pseudo-blobs since their visibilitgrh Vision vol. 4, pp. 133-146.

the cameras is not sufficient enough (less thanKhan S.M., Yan P., Shah M., 2007. A homographic

— ; P ; framework for the fusion of multi-view silhouettds.
t,=0.5). The object determination process ignores Int. Conf. on Computer Visiqup. 1-8.

them and correctly determines the three objectskrumm J., Harris S., Meyers B., Brumitt B., Hale M.,

consisting by blobs (1,3), (6) and (7,8), respextyiv Shafer S., 2000. Multi-camera multi-person tracking
for easy living. In3rd IEEE Int. Workshop on Visual
Surveillance pp. 3-10.

5 CONCLUSIONS Mittal A., Davis L. S., 2003. M2tracker: A multi-eiw

approach to segmenting and tracking people in a
cluttered scene. Imt. J. Computer Visignvol. 51, no
In this paper we addressed the problem of detecting 3, pp. 189-203.
humans in crowded scenes where several occlusionKelly P. H., Katkere A., Kuramura D. Y., Moezzi S,
take place. We have used only geometrical Chatterjqe S., 1995. An architecture for multiple
information given the foreground silhouettes. We perspelqtlvedllnteragt(l)ve 2‘"%‘90- Brd ACM Int. Conf.
have identified the main sources of errors when _ °O0 Mulimediapp. 201-212. - o
detecting humans based on the homographycal Q., Aggarwal J., 1999. Tracking human motion in
constraint. Namely these are the merging — spiittin structured environments using a distributed-camera
: ) g system. In|EEE Trans. on Pattern Analysis and
of accumulator corresponding to maxima and the  machine Intelligencevol. 21, no 11, pp. 1241-1247.

appearance of maxima not corresponding to humans.

We have set the criteria for the split operatiod an Tablel False positives for ground plane blobs
we have shown how to identify and reject the false Personsin frame _ FalsePositives
positives. The presented experimental results have 0”%‘“63 Pfolir?sgd
verified the proposed approach. Generally if thet fe metho metho

. - 1 0 9
are partially visible from one camera and deteetzd (148 frames) 0 0% 0 0%
foreground we are able to detect the presence of a 2

: . : . 12 | 28%| 8 | 1.9%

human and not to reject the associated maximum in (421 frames)
the map as false positive. Our next steps include (10533;rames) 83 | 7.3% | 26 | 2.4%
integrating our detection scheme with a tracker for Overall
consistent monitoring of humans in crowd. (1622) frames 9% | 58% | 34 | 20%
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Fig. 1 Merged blobs in the ground plane due to eoted
component analysis. The white areas corresporttetmaxima.
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Camera 1

Ground plane




Frame: 511 Camera 1

Objects: 3

Object 2

s,

Object 1
jec .

Object 3

Fig. 2 Magnified section of the accumulator dispiay the Fig. 4 Object determination consistency. The pessare
maxima resulting from three persons for the giveamera correctly identified by their blobs (lower left dvang) even when

configuration. Blobs 1,4,5,6 correspond to humavtsle blobs 2, person's 1 right foot is closer to object 2.
3 are false positives.

Frame: 517 Camera 1

"3

Objacts: 3

Camera 1 Foreground 1

Camera 2

Camera 3 Foreground 3

Oyt 3

Fig. 3 Left column: the three camera views. Rigblumn: the
front view of each blob back-projected to each view
superimposed to foreground masks. It is clear thitbs
corresponding to real targets are closer to theboof the image
in at least one view for some x coordinates, wttils does not
happen for the false positives.

Fig. 5 Blob normalization and pseudo-blob remowal farge

blobs. After dividing the large blobs into smalteres, only those
that are sufficiently visible from the cameras fgpate in the

object determination process.



