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Abstract: The problem of human detection in crowded scenes where people may occlude each other has been tackled 
recently using the planar homography constraint in a multiple view framework. The foreground objects 
detected in each view are projected on a common plane in an accumulated fashion and then the maxima of 
this accumulation are matched to the moving targets. However the superposition of foreground objects 
projections on a common plane may create artifacts which can seriously disorientate a human detector by 
creating false positives. In this work we present a method which eliminates those artifacts by using only 
geometrical information thus contributing to robust human detection for multiple views. The presented 
experimental results validate the proposed approach. 

1 INTRODUCTION 

The problem of detecting moving targets in crowded 
scenes is one of the most challenging topics in 
computer vision mainly due to occlusions. The 
employment of target models for tracking using a 
single camera has serious difficulties in cases that 
the target is partially or fully occluded (e.g., 
(Makris, 2007). Therefore several researchers used 
multiple cameras to compensate that problem. 
Having multiple overlapping views increases the 
possibility that the target is visible or less occluded 
in one of those views.  

Regarding the target matching in overlapping 
views, there are several taxonomies of the related 
methods according to the used features and 
according to the requirement for camera calibration. 
A popular approach is to consider the targets as 
regions and then to use the region features for 
matching in multiple views. Color is a popular 
feature and is modeled through color histograms, 
e.g., (Krumm, 2000) or Gaussian color models, e.g., 
(Mittal, 2003). However, targets having similar 
colors may be poorly matched. Different viewpoints 
and lighting variations may cause the same target to 
be observed with different colors in different 

cameras. Inhomogeneous color may also cause 
problems if the same target exposes different colors 
in different cameras.  

Several approaches use geometrical constraints, 
which may require either camera calibration or a 
homography constraint based on the ground plane. 
The 3D methods transform all points, e.g., target 
centroids into the common 3D coordinate system 
and perform matching based on the proximity of 
those points, e.g., (Kelly, 1995). Alternatively the 
epipolar constraint is employed, using only the 
relative pose of the cameras, e.g., (Cai, 1999). 

Several recent works exploit the fact that the 
targets move on a common plane, especially for 
indoor scenes, e.g., (Eshel, 2008), (Hu, 2006), 
(Khan, 2006), and (Khan, 2007). The approach that 
is commonly followed in such a framework can be 
roughly described by the following stages: 

a) Background subtraction to get moving objects. 
b) Employment of homography constraint to project 
the foreground regions on a common plane. 
c) Processing of the projected data to extract the 
moving targets - the focus of our work. 
d) Optionally additional processing for matching 
the targets either using templates or color models, 
which will not be further examined here. 



 

Background subtraction includes modeling each 
pixel’s color, e.g., as a Gaussian Mixture. Whatever 
deviates from the model is considered foreground. A 
review can be found in (Hall, 2005). 

The projection is based on the results from 
previous stage. It calculates offline the 
transformation of a reference ground plane to the 
plane of each camera through a homography matrix. 
It then projects each pixel classified as foreground in 
each view in the reference plane, e.g., (Khan, 2006). 
In (Khan, 2007) the same idea is extended for 
multiple parallel planes to obtain 3D shape of the 
monitored targets. In (Eshel, 2008) three planes and 
the correlation of intensity values for head detection 
are used. 

As soon as the projection on the common plane 
takes place the detection of moving targets starts 
(stage c). In (Khan, 2006) the projected foreground 
pixels create a synergy map in an accumulator 
fashion and the maxima correspond to ground target 
position. This method provided many false positives, 
due to intersection of the projected silhouettes that 
create undesired maxima. We propose a method for 
eliminating these false positives using only 
geometrical information, thus avoiding the error-
prone color modeling.  

In the next section we present the principles for 
the accumulator calculation and the problems that 
arise. In section 3 we present how we overcome 
these issues. In section 4 we present experimental 
results and section 5 concludes this paper. 

2 GROUND PLANE 
ACCUMULATOR 

In this section we calculate the accumulator, we 
show the problems in approaches based on (Khan, 
2006) and we introduce our solution using only 
geometric information.  

The planar homographies are geometric entities 
that associate points on different planes. Assume 
that a point on the ground plane is expressed as 

( )T1,,P ΥΧ=π  and that the coordinates of this point 
on the camera plane are ( )T1,,P yxc = . The 
homographyH is a 3x3 matrix which relates πP and 

cP  as follows: 

cPHP =π  (1) 

The homography matrix can be calculated using a 
known pattern, visible from all cameras. From the 
previous equation we construct the accumulator by 
simply projecting on the ground plane the 

foreground pixels ( )T1,, yx  in each camera. The 
maxima of this array correspond to ground point 
positions of the viewed target on the ground plane, 
that is, the position where the feet touch the ground. 
The maxima are filtered out by applying a threshold 
that equals the number of cameras in use. To extract 
the feet blobs, connected component analysis is 
performed on the filtered ground points. People are 
detected by grouping feet blobs belonging to the 
same person into clusters. In the following analysis, 
the term “object” refers to a collection of blobs in 
the ground plane that belong to the same person.  

The main aim of the proposed method is to 
efficiently maintain the information contained in the 
attributes of the blobs (size, orientation, 
connectivity) in order to group them into objects so 
that each object correctly identifies the location of a 
person in the ground plane. The object position can 
then be back projected into the camera views in 
order to extract information (e.g. the vertical axis) of 
the person(s) position in the original data. 

Effective target extraction depends on the 
following issues: 
1) Blob assignment. Usually an object consists of 
one or two blobs depending on the walking cycle. 
Thus, the number of blobs that constitute an object is 
constantly changing. Therefore, adding or removing 
a blob from an object depends on its position on the 
plane as well as on the geometrical properties of the 
object itself. 
2) Blob size. The connected component analysis that 
is applied to the accumulator may result to large 
blobs as a result of morphological merging of two or 
more maxima areas. Figure 1 depicts an example. 
3) Pseudo-blobs. The projection of each person's 
silhouette in the image plane corresponds to a 
"shadow" in the ground plane. The homography 
transformation may produce maxima at points of 
multiple shadow co-occurrences. In Figure 2 blobs 2 
and 3 denotes two such cases. 

The following section presents our method 
regarding the above issues. 

3 TARGET DETECTION 

3.1 Object determination 

Let us suppose there are Ln  objects in the ground 

plane from the previous frame and that each object 

lM , l=1… Ln , is represented as an Gaussian 



 

mixture model (GMM) where the probability density 
function is composed of a mixture of m component 

densities {λ1,…, λm}. There are )( lm  components in 
the l-th object and each one corresponds to a 
Gaussian distribution that describes the statistical 
properties of a maxima subset in the accumulator 
array. Let also Bn  denote the number of blobs in the 

ground plane that we want to group into objects and 
let js  denote the number of points in blob jB  

where j=1… Bn . For any point ji B∈x  the 

probability that it belongs to object lM  is given by 

( ) ( )( ) ( )( )
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Typically, the weight P(λj) of each mixture and the 
parameters ( )jp λ|x ~ ( )jjN Σ,µ for each component 

are unknown and a parameter estimation 
methodology is applied to determine them. In the 
proposed approach the Expectation Maximization 
(EM) algorithm is used to obtain maximum 
likelihood estimates of the parameters in the GMM. 
For each point ji B∈x  an object candidate ic is 

calculated as 
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Threshold pt  defines a minimum allowed 

probability that some blob j belongs to some object 
l. Let the stochastic vector jf  hold the probability 

mass function ( )lci =Pr  regarding the j-th blob, for 

all points in the blob. If jl̂ =argmax( jf ) then the 

blob jB  is added to object
jlM ˆ : 

( ) 0andmaxif >>
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Threshold ct  designates a minimum proportion of 

points in blob jB  that must be closer to some object 

jlM ˆ  in order to assign the whole blob to this object. 

In case where any of the two conditions in (4) is not 
fulfilled, a new object is created that holds only 
blob jB , that is 

jl
BM

j
=ˆ  where jl̂ = 1+Ln  (5) 

This case arises in isolated blobs, a typical situation 
when a new person enters the scene. The creation of 
a new object is affected by thresholds pt  and ct  

both of which are application related. 
The above process is repeated for all the blobs in 

the ground plane. Finally, any objects that have no 
blobs assigned to them are eliminated. Otherwise, 
the GMM of each object lM  is recalculated based 

on the newly assigned blob points. 

3.2 Blob size normalization 

Connected component analysis on the maxima of the 
accumulator may result to merged components 
(blobs) that actually correspond to different objects, 
as shown in Figure 1. In this case, where the blob 
size exceeds a predefined threshold st , a splitting 

process is applied before the object determination 
phase in order to break down the blob into several 
smaller ones that may then be assimilated by 
different objects or even rejected as pseudo-blobs.  

In order to split a blob jB  into two parts a 

Gaussian mixture model (GMM) is used with two 
components {λ1, λ2}.  Let kµ  and kΣ  denote the 

mean and variance of component λk. Blob jB  is 

replaced by two blobs (1)jB  and (2)jB  and each 

point ji B∈x  is assigned to  

{ }kdBB ijikj =∈= thatsuch)( x   (6) 

where id denotes the closer component according to 

the Mahalanobis distance. The process may be 
repeated until jB  is replaced by two or more blobs 

with sizes less than thresholdst . 

3.3 Pseudo-blob removal 

In crowded scenes where people are standing close 
to each other, the projection of each person's 
silhouette into the accumulator using the 
homography may cause the appearance of pseudo-
blobs as a result of overlapping shadows in the 
ground plane view. It can be noticed that each 
shadow in the ground plane corresponds to a person 
in the original image viewed from a specific camera. 
Moreover, there are three shadows for each person 
each one starting from the blob(s) that correspond to 
the feet. The intersection region of any three 
shadows forms a potential pseudo-blob area. Figure 
2 depicts a ground plane example that corresponds 



 

to three persons standing in a scene viewed by three 
cameras (see also Figure 3, left column). The white 
areas correspond to accumulator values equal to 3. It 
can be seen that co-linear arrangement of camera 
sources with two or more feet blobs results to mutual 
shadows overlapping, like blobs 1 and 5. However, 
there are cases like blobs 2 and 3 where shadows 
from blobs 1, 4 and 5 overlap in the middle region 
resulting to pseudo-blobs 2 and 3.  

We propose a method for removing these 
artificial blobs by examining the visibility of each 
blob from the cameras. Specifically, we check if for 
any blob jB   there are other blobs that conceal it 

partially or fully when viewed from the camera. The 
visibility of blobs can be effectively computed in a 
straightforward fashion by back transforming all 
blobs from the ground plane to the camera views. 
Rather than comparing blob-to-camera vicinity in 
ground plane polar coordinates, the transformed blob 
pixels are compared according to their vertical 
position in each camera's Cartesian coordinate 

system (Figure 3, right column). Specifically, let jB
~

 

denote the transformed pixels of the j-th blob in the 
k-th camera view. Let { }maxmin... jjjx xx=r  denote 

the set of x-coordinates that blob jB
~

 occupies in the 

current camera view. Similarly, let 

maxjy = { }jyj Bx
~

∈)(max  denote the largest of all y-

coordinate values. The blob with the greatestmaxjy  

coordinate at x among all blobs with x in their range 
of x-coordinates, is given by 

( ) { } jxjj
j
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The visibility of blob jB
~

 from the camera is  
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∈

=
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 such that ( ) jxy =  (8) 

where x  denotes the cardinality of set x . The 

value of jv  ranges from 0 (no visible at all) up to 1 

(fully visible). The above process is repeated for the 
rest of the cameras. An application related threshold 

vt  can be defined to binarize the decision making. 

 ( )( )∑ >= v
c
jj tvv~  for all the cameras c (9) 

For each blob, jv~  is an integer value that ranges 

from 0 up to the overall number of cameras in use. 

For zero value of jv~ , blob jB
~

 can be rejected as 

pseudo-blob since it is not visible (in a certain 
degree, controlled by vt ) from any camera. In this 

case, this blob does not participate in the object 
determination process described in section 3.1. In 
Figure 3 the left column depicts the three camera 
views for the same frame as in Figure 2. The right 
column depicts a zoomed area of the feet for the 
corresponding foreground silhouettes. Each 
horizontal line segment corresponds to the range jxr  

of a blob jB
~

. Thus, for any x offset, the visible blob 

is the one closer to the bottom of the image. 

4 EXPERIMENTAL RESULTS 

The proposed method has been tested in a 
surveillance system installed in our lab that consists 
of three cameras as shown in Fig. 2. Cameras 1 and 
2 have been deliberately located in a facing position 
in order to better simulate a real world situation 
where the optimum equidistant installation of 120 
degrees between cameras is barely achieved due to 
space limitations. To evaluate our method we have 
used a sequence of 1650 video frames from each one 
of the three cameras that depict a varying number of 
persons entering, walking and exiting the scene. 
Table 1 summarizes the detected false positives (FP) 
when comparing the original (Khan, 2006) and the 
proposed method. The results show that for 2 and 3 
persons in the scene (when actually overlapping may 
occur in the ground plane) the proposed method 
significantly decreases the number of false positives 
in the blob detection. Indeed, due to the blob 
normalization and pseudo-blob removal processes 
the proposed method successfully ignores blobs that 
do not actually belong to any person in the scene. 

Figure 4 depicts the proposed method's 
efficiency in a complex situation. There are 6 blobs 
belonging to 3 objects and person 1 makes a large 
stride. As a result his right foot is clearly closer to 
the feet that correspond to person 2. However, the 
GMM that describes the distribution of blobs 
belonging to this person's object stretches properly 
in order to keep its feet (blobs 1 and 3) together. The 
contours in the lower left subplot denote the 
identified objects and their centre corresponds to the 
person's vertical axis. These points are back 
projected in the 3 cameras views in order to denote 
the intersection point of each person with the ground 
plane. Figure 5 depicts an even more complicated 
case, a few frames later, where both blob 



 

normalization and pseudo-blob removal are applied. 
Initially there are 4 blobs in the ground plane, of 
which, blobs 1 and 2 exceed the threshold st =30 

(upper left drawing). After the blob size 
normalization process is applied, the first one is 
divided into blob 1 and 2 as shown in the lower left 
drawing of Figure 5, while the other one is replaced 
by blobs 3 to 6. However, blobs 2, 4 and 5 are 
identified as pseudo-blobs since their visibility from 
the cameras is not sufficient enough (less than 

vt =0.5). The object determination process ignores 

them and correctly determines the three objects 
consisting by blobs (1,3), (6) and (7,8), respectively. 

5 CONCLUSIONS 

In this paper we addressed the problem of detecting 
humans in crowded scenes where several occlusions 
take place. We have used only geometrical 
information given the foreground silhouettes. We 
have identified the main sources of errors when 
detecting humans based on the homography 
constraint. Namely these are the merging – splitting 
of accumulator corresponding to maxima and the 
appearance of maxima not corresponding to humans. 
We have set the criteria for the split operation and 
we have shown how to identify and reject the false 
positives. The presented experimental results have 
verified the proposed approach. Generally if the feet 
are partially visible from one camera and detected as 
foreground we are able to detect the presence of a 
human and not to reject the associated maximum in 
the map as false positive. Our next steps include 
integrating our detection scheme with a tracker for 
consistent monitoring of humans in crowd. 
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Table 1 False positives for ground plane blobs 

Persons in frame False Positives 

 
Original  
method 

Proposed 
method 

1  
(148 frames) 

0 0% 0 0% 

2  
(421 frames) 

12 2.8% 8 1.9% 

3  
(1053 frames) 

83 7.3% 26 2.4% 

Overall  
(1622) frames 

95 5.8% 34 2.0% 

 

 
Ground plane 

 

 
Camera 1 

 
Camera 2 

 
Camera 3 

Fig. 1 Merged blobs in the ground plane due to connected 
component analysis. The white areas correspond to the maxima. 



 

 
Fig. 2 Magnified section of the accumulator displaying the 
maxima resulting from three persons for the given camera 
configuration. Blobs 1,4,5,6 correspond to humans, while blobs 2, 
3 are false positives. 

 

  
Fig. 3 Left column: the three camera views. Right column: the 
front view of each blob back-projected to each view, 
superimposed to foreground masks. It is clear that blobs 
corresponding to real targets are closer to the bottom of the image 
in at least one view for some x coordinates, while this does not 
happen for the false positives. 
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Fig. 4 Object determination consistency. The persons are 
correctly identified by their blobs (lower left drawing) even when 
person's 1 right foot is closer to object 2. 

 

  
Fig. 5 Blob normalization and pseudo-blob removal for large 
blobs. After dividing the large blobs into smaller ones, only those 
that are sufficiently visible from the cameras participate in the 
object determination process. 


