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Abstract 
 
The timely diagnosis and treatment of pressure ulcers is a critical task and constitutes a 

challenge in patient rehabilitation. In this work we investigate how a tool for automated 

pressure ulcer stage classification can be integrated into an asynchronous telemedicine 

system aiming to increase efficiency and monitoring capabilities for large volumes of patient 

data. The deployment requirements, the internal architecture as well as the employed 

techniques are outlined. Furthermore, the initial processing results are provided to 

demonstrate the feasibility of automated classification of pressure ulcer regions in various 

grades.   
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I. Introduction  

A pressure ulcer is a lesion caused by unrelieved pressure resulting in damage of underlying 

skin tissue when the body stays in one position for too long without shifting the weight. 

Pressure ulcers occur in acute and chronic health care settings. Even short time bedridden 

patients (for example, after surgery or an injury) can be found at high risk of developing 



pressure ulcers. Long term care facilities nursing the elderly and wheelchair dependent 

patients face high rates of pressure ulcer incidence. In the United States, pressure ulcer 

prevalence in acute care hospitals is as high as 17 percent, in long term care facilities is 28 

percent and at home care at 29 percent. Moreover, there are more than one million new 

pressure ulcer cases annually and more than 60,000 deaths every year are associated with 

pressure ulcers. The treatment of pressure ulcers requires nursing care by especially educated 

personnel, the use of special support surfaces, nutrition supplements and a variety of products 

that enhance the healing process of the pressure ulcer area. In the United States the estimated 

cost involved in management of pressure ulcers is estimated to be $6.4 billion annually and 

the healing cost of a single pressure ulcer can be as much as $50,000 [1].  

The accurate diagnosis and the appropriate treatment are crucial because starting the 

treatment too late may lead to the development of more severe lesions which may be life-

threatening; on the other hand starting early results in the unnecessary deployment of 

expensive means and measures. In most cases the digital images are adequate for recognizing 

the case severity by experienced personnel. This indicates that digital images of pressure 

ulcers can be used for telemedicine purposes as pointed out by works such as [2]. 

Furthermore, the two-dimensional information contained in the photos, which is analyzed by 

humans for diagnosis, could be analyzed by machines for the same purpose, provided that 

proper processing techniques exist and can be employed. 

Many tests have been performed in the past, where experts were given images and were 

requested to identify the lesion severity based only on them, e.g., [3], [2]. Furthermore, many 

researchers have been occupied with the analysis of pressure ulcer images especially for 

follow up monitoring. However, none of them has dealt with the problem of automated lesion 

classification. For example [4] proposes a tool using images for classifying the pressure ulcer 



and for healing monitoring but the related data are entered manually and the classification is 

done manually as well. In [5] the lesions are measured from photos using a 3D acquisition 

system employing a pattern-projecting device, so that the spatial data can be extracted, but 

the automated lesion classification problem is not handled. The idea of using pressure ulcer 

images for telemedicine purposes has been examined mainly for synchronous applications, 

where there is always a human who diagnoses the pressure ulcer stage e.g., in [7].   

The major priority of the pressure ulcer prevention can best be accomplished by identifying 

individuals who are at risk for the development of pressure ulcers (conforming to commonly 

used scales such as the Norton and Braden) and by the initiation of early preventive 

measures. However, the timely diagnosis and treatment of pressure ulcers constitutes a 

challenge in patient rehabilitation, since there is a variety of classification systems and 

because highly skilled and experienced personnel is required. Consistency in diagnosis from 

various experts can not be easily achieved as mentioned, e.g., in [3], because the human 

factor itself implies subjective clinical judgement and bias. Moreover, the patients who 

develop pressure ulcers have serious mobility problems and therefore experts are required, 

who will be able to monitor them on-site at regular intervals. However, this is not always 

possible due to the worldwide nursing shortage (see e.g., [6]) since pressure ulcer 

management services are mainly run by nurses. Of course the problem is even more acute in 

areas with difficult access. An additional factor that has to be considered is that frequently the 

pressure ulcers are identified at later stages and in such cases immediate actions are required. 

Furthermore, the asynchronous telemedicine systems, which collect large volumes of patient 

data daily, would benefit from automated and constant classification or filtering; such a 

process could increase significantly the efficiency and monitoring capabilities of the medical 

experts who classify such images manually. Therefore, a tool that would be able to perform 



automated diagnosis in an objective and consistent manner at any time with no location 

restrictions is of obvious utility. 

 

In this work we examine the potential of using digital images to classify regions appearing in 

pressure ulcer images and thus being able to have a diagnosis about the patientís current state. 

We capitalize on telemedicine infrastructure, which can overcome difficulties posed by 

remote patient location, and we aim to provide diagnostic tools that will satisfy the above 

requirements. 

The use scenario includes image acquisition, using some simple instructions to ensure high 

image quality, then logging into the system through a web-browser at any time of the day, 

uploading the images, marking some regions of interest and giving optionally patient data and 

comments; then the system provides a diagnosis and proposes therapy; the submitted data are 

stored so that human experts will be able to monitor selectively the provided results and 

finalize the diagnosis if necessary.   

II. Pressure ulcer characteristics 

The National Pressure Ulcer Advisory Panel (NPUAP) define as pressure ulcer every area of 

localised damage to the skin and underlying tissue caused by pressure, shear, friction and/or 

a combination of them [1].  

Pressure ulcers are usually located over bony prominences and are staged to classify the 

degree of tissue damage observed. The pressure ulcers occur if a wheelchair is used or if the 

person is bedridden, even for a short period of time (for example, after surgery or an injury). 

The constant pressure against the skin reduces the blood supply to that area, and the affected 

tissue dies. The most common places for pressure ulcers are over bony prominences (bones 



close to the skin) like the heels, back, elbow , hips, ankles, shoulders, and the back of the 

head (see Fig. 1). A pressure ulcer starts as reddened skin but gets progressively worse, 

forming a blister, then an open sore, and finally a crater.  

Classification grading systems have been developed to assist clinical personnel with 

gathering consistent information and to define and describe skin damage and to improve 

diagnosis, treatment and allocation of resources. The classification system proposed by 

European Pressure Ulcer Advisory Panel (EPUAP) defines the following grades of severity 

[8]: 

• Grade 1: non-blanchable erythema of intact skin. Discolouration of the skin, warmth, 

oedema, induration or hardness may also be used as indicators, particularly on 

individuals with darker skin. 

• Grade 2: partial thickness skin loss involving epidermis, dermis, or both. The ulcer is 

superficial and presents clinically as an abrasion or blister. 

• Grade 3: full thickness skin loss involving damage to or necrosis of subcutaneous 

tissue that may extend down to, but not through underlying fascia. 

• Grade 4: extensive destruction, tissue necrosis, or damage to muscle, bone, or 

supporting structures with or without full thickness skin loss. 

Additional classes that may coexist with the ones above in pressure ulcers are:  

• Black necrosis, which is a sign of dead tissue in arterial insufficiency (of dark color), 

which can also be seen in parts of an ulcer after an infection.  

• White necrosis, which indicates dead tissues and is a preliminary stage of black 

necrosis (of light color).  

The aforementioned classes are depicted in Fig. 2a. 



 

III. Requirements 

A classification tool for skin lesions has to fulfill, apart from ease of use, several other 

requirements so that it is of practical use to the related personnel. We have identified the 

following: 

 

• Robustness to acquisition conditions. The tool has to provide results under a variety of 

conditions. It can not be assumed that the image acquisition conditions will be 

uniform or ideal. Therefore, the noise and reflections in the images have to be treated 

accordingly. Furthermore, the distance of the image acquiring camera, as well as the 

image orientation, are not known in advance. 

• Discrimination of regions based on color, since color is one of the most 

discriminative features for lesion classification into the different stages.  

• Discrimination of regions based on texture, since texture can provide useful 

information about the pressure ulcer stage.  

• Consideration of patientís skin color, since the skin color in case of stage 1 ulcer is 

quite similar to skin. Different color for stage 1 ulcers is expected when comparing 

dark skinned patients with light skinned ones. 

• Classification accuracy, due to the criticality of the task.  

• Ability to classify correctly coexisting different lesion stages. Different pressure ulcer 

stages may coexist around the same lesion. It is not correct to classify the whole ulcer 

to a single class since the separate regions have different properties and consequently 

need different treatment. 



• Acceptable performance to enable use for high volumes of data and to ensure 

response within reasonable time. The performance issue becomes more important as 

the scale of use grows. 

These requirements have been used as a guide for developing the proposed tool.  
 
 
 
IV. Tool overview 

In Fig. 3 an overview of the tool and its modules is depicted. It works in two modes: training, 

during which the tool learns the characteristics of the pressure ulcer classes and operation, 

during which image segments are classified. A brief description of the process is given in the 

following, while the image processing and the classification are described in more detail in 

the next section. 

The training process starts by retrieving selected images from a repository, which has to 

include as many representative cases as possible. After noise filtering the images are 

automatically segmented to find regions with homogeneous characteristics. The image 

segments are presented to the user, who then labels them according to the class she/he 

believes that they belong to. After labeling, for each region color and texture features are 

extracted. Then the features are input to a learning module, which determines the classifier 

parameters, which will be used during the operation mode. 

In the operation mode the tool performs classification using the classifier parameters defined 

in training. The images coming from remote locations are processed in a fashion similar to 

training (noise reduction, segmentation and feature extraction) without user intervention. The 

calculated features per region are input to the trained classifier, which then provides a 

classification result (pressure ulcer stage) for each segment separately. 



V. Image processing and classification 
 

As stated above, one of the primary goals of the tool is to segment the regions according to 

their color features. It is noticed that the lesions have discriminative colors that differentiate 

them from the surrounding tissues, so color can be used as the primary feature for their 

detection. Furthermore, the colors regarding each stage are distinct too, thus enabling us to 

use them for classification. 

 

Due to non-uniform illumination we expect that reflections will be present mainly in a form 

similar to ì salt and pepperî  noise due to the uneven nature of the skin and the ulcer (however 

the noise can be dense in some regions). This noise can be minimised by applying median 

filtering. The median filtering is undesired in the general case, due to the fact that it 

eliminates ulcer detail, which may be useful for texture feature extraction; therefore we limit 

its application to regions where we have unusually low saturation values.  

For segmentation after noise reduction we use the method proposed by [9]. It is able to 

capture perceptually distinct regions even though their interior is characterized by large 

variability, by considering global image characteristics. Furthermore, it is computationally 

efficient. It measures the evidence of a boundary between two regions by computing (a) 

intensity differences across the boundary and (b) intensity differences between neighbouring 

pixels within each region. Intuitively the intensity differences across the boundary of two 

regions are perceptually important if they are large relative to the intensity differences inside 

at least one of the regions. For the color images that we examine the intensity difference is 

calculated for each channel separately.  



For texture processing we used for each region the Gabor functions, which form a complete 

but non-orthogonal basis set, which can be used for expanding the signal to provide a 

localized frequency description. A class of self-similar functions, which compose the ì filter 

dictionaryî , referred to as Gabor wavelets are obtained by appropriate dilations and rotations 

of a ì motherî  Gabor function. The redundancy of information due to non-orthogonality is 

reduced by appropriate definition of scale factors and filter parameters as shown in [10].  

Each image segment is represented separately by a feature vector, which includes features 

related to color and texture: 

• The calculated color features are based on color histograms in the HSV space. From 

these values we exclude the ones with very low saturation because they belong most 

probably to reflections. Due to varying illumination conditions and different skin 

colors we use as additional feature the Bhattacharya distance of each region from the 

color of healthy skin. Since the human skin varies within certain limits in the color 

space this feature is quite discriminative and less sensitive to illumination changes.  

• The texture features are calculated using Gabor wavelets for each region. Due to the 

unknown pose of the camera relatively to the target ulcer we calculate the features in 

several scales (achieved by reducing resolution) and orientations (achieved by rotating 

the filters), as shown in [10]. The histograms of the magnitude of the complex 

transform coefficients are then used as features.  

The size and range of histogram bins are defined using a vector quantization scheme to 

achieve optimal representation and to limit the number of bins due to performance 

considerations.   



For the segment classification task we employ the Support Vector Machine classifier (SVM), 

which is known for its computational efficiency and effectiveness, even for high dimensional 

spaces for classes that are not linearly separable [11]. During training we provide the 

extracted features along with labels indicating if the features correspond to a class or not for 

each of the seven classes. The SVM gives as output a number of support vectors, which are 

then used in operation mode for separating the classes. 

The output of the classification is a map of the image where the different classes are 

displayed. Neighboring regions belonging to the same class appear as single regions. 

 
VI Experimental results 
  

The pressure ulcer data used in this research have been acquired in various hospitals. The 

image acquisition has been performed using mainstream high resolution CCD cameras with a 

single color sensor. A flash module was enabled providing non-uniform illumination. The 

acquisition took place from a variety of (approximately known) distances. The images of 

lower resolution were used as reference for the texture features calculation, i.e., only the 

scales that matched these lower resolution images were used for calculating texture so that all 

images could be comparable. 

The images were in RGB format, with low or no compression at all, to ensure high quality, 

using 8 bits per color channel. The color was not normalized during processing.  

The images at our disposal were eighty five, and each of them could provide as many as fifty 

segments, providing samples of different classes. The rectangular regions of interest, which 

included the pressure ulcer, were manually defined by the operator and then processed by the 

system for segmentation and classification. Each region included several hundred to several 



thousand pixels. Approximately one hundred samples were used for training each class. For 

each patient we also included regions representing healthy skin tissues to compare with 

pressure ulcer regions in stage 1, which looks quite similar to skin. During the segmentation 

process we favoured the over-segmentation in order to have as compact regions as possible, 

but we also defined a minimum segment size, so that we avoided very small regions. The 

segmentation result was satisfactory in most cases (see Fig. 2b). 

For classification we used the linear, the Gaussian radial basis, the polynomial and the 

sigmoid hyperbolic tangent kernel functions with varying the C parameter, which expresses 

the trade-off between training error and margin. Various kernel parameters were also tested. 

The training and test samples were of equal size. The overall task was completed in less than 

30 seconds in a standard PC for images of about 5Mpixels. 

The classification error (average of false positive and false negatives at the region level) is 

presented in Table 1 for the case of Gaussian radial basis kernel, which provided the best 

results. Most misclassifications occurred between close stages (difference one). The 

experimental results can justify that the first approach for this challenging problem is 

promising despite the difficulties posed by the color and scale variability (due to 

unconstrained environmental conditions).  

The error factors that are inherent in the proposed processing are stemming from (a) the 

variability of color due to non-uniform illumination, reflections and image sensor properties 

(b) to scale variations, which affect texture (c) to segmentation errors, and (d) to separation 

errors during training. The errors stemming from (a) are partially compensated by using the 

healthy skin color as reference. Errors stemming from (b) can be reduced if a more controlled 

acquisition process can be executed, i.e., if approximate target distance and camera focal 

length can be determined, so that the appropriate processing scale can be determined. Errors 



of type (c) were not that significant to influence the system outcome. Errors stemming from 

(d) can be reduced by using more specific image features and more complex kernel functions. 

Our goal is to further automate the feature calculation by applying additional criteria, e.g., 

class adjacency, to reduce classification errors and to simplify the acquisition process. The 

scale problem will be able to be automatically calculated by including in the image a simple 

pattern of known dimensions (marker), placed next to the target. 

VII Deployment 
 
An architecture that may be employed is a centralized one, where one (or more) server PCs 

which will have to receive, process and distribute (if appropriate) the submitted data from 

several clients over the internet or over intranets. The images along with some additional 

information (e.g., patient data, comments, regions of interest) have to be submitted through a 

web-based interface by client PCs. The whole processing functionality in this case is 

implemented at the server side, thus minimizing complexity for the user. The server has to 

provide also a secure communication protocol, e.g., https. 

The data that have to be typically transmitted are some megabytes per image (normally no 

more than two or three images need to be analyzed per session for a patient), which 

necessitates the use of a fast network connection. At the client side only a web browser is 

required and optionally a compression tool. The additional equipment at the client side 

includes the image acquisition device and optionally equipment for minimizing reflections 

(e.g., lamps, optical filters). 
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Figure 1 Common locations of pressure ulcer development (source: www.health.nsw.gov.au) 
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Table 1: Experimental classification results  
 
 
 

 
 
 
 
 
 
 
 

 
 
 

Class Success rate (%) 
Stage 1 78.32% 
Stage 2 75.44% 
Stage 3 82.73% 
Stage 4 84.11% 
White necrosis 87.65% 
Black necrosis 91.20% 


