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In this paper, a method for the detection and classification of defects in weld radiographs is presented.
The method has been applied for detecting and discriminating discontinuities in the weld images that
may correspond to false alarms or defects such as worm holes, porosity, linear slag inclusion, gas pores,
lack of fusion or crack. A set of 43 descriptors corresponding to texture measurements and geometrical
features is extracted for each segmented object and given as input to a classifier. The classifier is trained
to classify each of the objects it into one of the defect classes or characterize it as non-defect. Three fold
cross validation was utilized and experimental results are reported for three different classifiers (Support
Vector Machine, Neural Network, k-NN).

� 2010 Elsevier Ltd. All rights reserved.
1. Introduction

The inspection of welds is a very important task for assuring
safety and reliability in several industrial sectors, e.g., ship and air-
craft industry. For this purpose Non-Destructive Testing (NDT)
techniques have been employed to test a material for surface or
internal flaws without interfering in any way with its suitability
for service. Such methods are the acoustic emission, magnetic par-
ticle inspection, eddy current, ultrasonic testing, thermal inspec-
tion and several others (Anouncia & Saravanan, 2006). These
techniques are based on the observation that weld defects cause
some sort of discontinuity to the test signal, which allows for rec-
ognition. However, each method is appropriate only for specific
types of defects.

On the contrary, radiography (X-rays or sometimes gamma
rays) seems to be the most effective method and the experts are
able to identify most types of defects in the images produced by
this method. The method is based on the fact that the defective
areas absorb more energy and thus the defects appear darker in
the image (Hayes, 1997).

Some of the most common weld defects that can be identified in
the radiographic images are the worm holes (worm-like cavities),
slag inclusion (slag or other foreign matter entrapped during weld-
ing), linear porosity (linear cavities due to entrapped gas), gas
pores (spherical cavities due to entrapped gas), lack of fusion (lack
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of union between weld and parent metal) or crack (discontinuity
by fracture in the metal). Examples views of each of those defects
are given in Fig. 1.

The interpretation of weld radiographs even by experienced
inspectors can, however, be subjective and time-consuming and
some types of defects could remain undetected due to lack of time.
Even the same persons may give contradicting evaluations for the
same images, depending on their mental states (Nockemann,
Heidt, & Thomsen, 1991). Thus, several researchers have tried to
automate the inspection process by employing image processing
and pattern recognition methods. The goal of such methods is to
give consistent, objective and reliable results.

In the related literature to our knowledge the features that are
used do not combine all available sources of information (intensity,
geometry and texture) to solve the general multi-class defect
detection and classification problem. This is obviously due to lack
of appropriately designed features that can capture the attributes
of each defect type. Our work tries to fill this gap without sacrific-
ing performance. The innovation of the proposed paper regards the
combination of the following:

� Multimodal feature definition using intensity texture and geo-
metric characteristics, thus capturing all visual attributes.
� Feature selection to limit processing to those features that are

actually important for each different class avoiding information
redundancy.
� Defect detection and classification into seven different classes

(including segmented non-defects) comparing some state of
the art multi-class classification methods (Support Vector
Machines and Neural Networks).
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Fig. 1. Types of weld defects in cross section and how it is expected to appear on a
radiographic image: worm hole, linear slag inclusion, gas pore, linear porosity, lack
of fusion, various types of cracks. Source: From British Standard, 1998.

Fig. 2. General process flow of radiography-based automated weld defect recog-
nition systems.
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In the next section the related work is presented. Then the weld
radiographic images and the methodology for defect detection
(segmentation) and classification are presented in Sections 3 and
4, respectively. In Section 5 the experimental results are reported
and Section 6 concludes this paper.
2. Related work

The potential benefits of a fully automated system for weld de-
fect detection and evaluation has motivated a lot of research in the
related field. More or less the systems presented so far follow the
process described in Fig. 2. After digital image acquisition only a re-
gion of interest (ROI) is further processed. Some preprocessing may
take place like noise reduction (e.g., gaussian or median filtering)
and contrast enhancement (e.g., histogram equalization) to assist
the defect segmentation.

Then segmentation of regions that may represent defects is
done. Several methods can be used to segment the defect, i.e.,
detect the defect on the image, ranging from simple segmenta-
tion methods (e.g., thresholding) to more advanced methods that
combine background subtraction, as explained in the following.
In Nacereddine, Tridi, Hamami, and Ziou (2006), Otsu’s, Niblack’s
and Sauvola histogram threshold methods are comparatively as-
sessed in the weld defect detection and Sauvola method is pro-
posed. Sofia and Redouane (2002) describe a defect
segmentation method based on a watershed algorithm and mor-
phological operations (erosion and dilation). Carrasco and Mery
(2004) propose a set of robust image processing techniques (bot-
tom hat filter, morphological operators and watershed algorithm)
Please cite this article in press as: Valavanis, I., & Kosmopoulos, D. Multiclass
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that are appropriately combined to segment defects. Background
subtraction methods construct a reference defect-free image
(Sood, Blakeley, & Rebuffel, 2006) (known as golden image) and
subtract it from the original image to detect defects, however
the creation of this golden image is normally non-trivial.

As soon as the defects are segmented using one the previous
methods, features can be extracted and then given as input to clas-
sifiers to detect possible defects and eventually to identify the ex-
act defect type. Optionally the defect dimensions are compared to
some acceptance criteria defined by experts or international stan-
dards and a decision is taken on the acceptability of the monitored
weld. In the following we are going to focus on feature extraction
and classification methods.
2.1. Feature definition

Several types of features have been used in literature. Among
the simplest ones are the geometric features. In Da Silva, Siqueira,
De Souza, Rebello, and Caloba (2005) features such as position, as-
pect ratio, roundness, area/rectangle, rectangle ratio are used. In
Wang and Liao (2002) are defined features like distance from the
center of weld, mean radius, standard deviation of radius, circular-
ity, compactness, major axis, width, length, elongation, heywood
diameter. Similar features can be found in several other works like
(Warren Liao, 2008; Liao, 2003). In Shafeek, Gadelmawla, Abdel-
Shafy, and Elewa (2004) similar features like form factor, rectangu-
larity factor, location and orientation are used.

The simple intensity features that are commonly used are the
average and the standard deviation of the intensity values (see
e.g., Wang & Liao, 2002). In Liao and Li (1998) the peak intensity
value and the mean square error between each pixel and a Gauss-
ian defect model are used.

Another class of features are the moment-based features
which provide information about shape and intensity at the
same time. For example in Nacereddine et al. (2006) the Hu mo-
ments are employed to model the defects. However, such fea-
tures are very costly and are well known for their information
redundancy.

The texture is another source of features, since it can provide
very useful visual cues. For example in Mery and Berti (2003),
the Haralick texture features and texture features based on the
defect detection and classification in weld radiographic images using geo-
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Gabor functions are evaluated. Such types of features require
much processing power and should be used with caution espe-
cially in large images.

It is clear that redundancy of information is expected when
large number of features is used. In such cases increasing the fea-
ture number does not provide better performance and the system
efficiency drops, especially for high resolution images such as the
radiographic images. The problem has been identified in the liter-
ature. For example in Hernandez et al. (2006) a Self Organizing
Map is used for dimensionality reduction. In Nacereddine et al.
(2006) and Vilar et al. (2009) the simple PCA was used. In Liao
(2003) the features are selected based on correlation. In Mery
and Berti (2003) the Sequential Forward Selection method is used
(Jain et al., 1997). In Warren Liao (2009) an ant colony optimization
method is used.

We differ from the aforementioned literature because we use
texture and geometrical features as well, allowing for better
modeling of various defects. We also use a feature selection
method, which gives an estimate about the expected perfor-
mance allowing for a reasonable trade-off between performance
and efficiency.

2.2. Classification

The classification is a processing step, which is decoupled from
the feature definition and extraction. Any classifier in the related
literature could be used for the classification of defects and the
field would obviously benefit from more advanced classification
methods. The main taxonomies here are the methods that treat
the task as binary (defect, non-defect) and the ones that treat it
as a multi-class problem.

Example of the binary problem is (Hernandez et al., 2006),
which uses a fuzzy inference system represented as a Neural Net-
work. In Mery and Berti (2003) the polynomial, Mahalanobis and
nearest neighbour classifiers were used. In Lashkia (2001) a fuzzy
algorithm method is used for detection.

An example of the multi-class classification is given in Liao
(2003), where the authors propose a fuzzy k-nearest neighbour
for six types of defects. Wang and Liao (2002) used a multi-layer
perceptron Neural Network and a fuzzy expert system for the
classification of welding defect types for six types of defects.
Da Silva et al. (2005) used a two-layer neural network to identify
six defect types. In Mirapeix, Garcia-Allende, Cobo, Conde, and
Lspez-Higuera (2007) an artificial Neural Network is used to dis-
criminate between three classes but only qualitative results are
presented. In Vilar, Zapata, and Ruiz (2009) an artificial Neural
Network is used to discriminate between five defects and false
positives.

It is a common phenomenon that some defect classes are more
frequent than others and that can favour the most populated clas-
ses during classification. This problem has been highlighted in sev-
eral works. Solutions like random duplication (e.g., Da Silva et al.,
2005) or other practices (Warren Liao, 2008) are shown to be of
merit.

We enhance the previous classification approaches firstly by
using well defined feature vector to solve the multi-class classifica-
tion problem. We also consider the best practices in training to
avoid misclassification of minority classes and we apply the resam-
pling technique of 3-fold cross validation. We also compare the
state of the art Support Vector Machine and Neural Network mul-
ti-class classifiers. Also in contrast to most works presented in the
literature we included in our tests the false alarms class as part of
the multi-class classification problem because it is not possible in
an fully automated system as the one presented here to segment
perfectly defects from non-defects, even if an initial binary classi-
fication step is assumed.
Please cite this article in press as: Valavanis, I., & Kosmopoulos, D. Multiclass d
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3. Defect detection

3.1. Local thresholding

Defect detection was done in two sequential steps: (1) Sauvola
local thresholding and (2) a graph-based segmentation method.
Sauvola is a popular local thresholding method that has been suc-
cessfully used in several image processing applications, e.g., in
Optical Characterization Recognition (OCR). It was used in
Nacereddine, Zelmat, Belaifa, and Tridi (2005) for weld defect
detection and it was shown that it performs better than the Otsu
global thresholding and Niblack local thresholding method. The
formula of the threshold T that is compared with the gray value
of the pixel centered in a N � N window is:

T ¼ M½1þ Kðs=R� 1Þ� ð1Þ

where M and s are the mean and standard deviation in the window,
R is the maximum standard deviation of gray level in all windows in
the image and K is a parameter defined by the user. N should be suf-
ficiently small to preserve the local details but it must be large en-
ough to remove the noise. After local thresholding, a morphological
filtering has to be used to remove a number of single dots in the re-
sulted thresholded image and get a smoothed binary image. This
image contains suspicious objects in ‘‘white”, while other areas be-
long to the black background. Suspicious objects correspond either
to defects or false alarms.
3.2. Segmentation

The next step is to use the regions extracted by preprocessing
and to extract segments that correspond to the defects or false pos-
itives. Here, we use the graph-based segmentation method pro-
posed in Felzenszwalb and Huttenlocher (2004). This method is
able to capture perceptually distinct regions, even though their
interior is characterized by large variability, by considering global
image characteristics. This is a very desirable feature, since such
cases are very common in weld defect images.

According to graph-based segmentation algorithms, an image is
represented as an undirected graph G = (V,E), where each pixel pi

has a corresponding vertex vi 2 V and (vi,vj) 2 E are the edges cor-
responding to neighbouring vertices. The weight of the edges rep-
resents the dissimilarity measure, i.e., difference in the gray level
function, between connected vertices. A segmentation S is a parti-
tion of V into components such that each component C corre-
sponds to a connected component in a graph G

0
= (V,E

0
), where

E
0

# E. In other words, any segmentation is induced by a subset
of the edges in E.

The selected method follows the general concept of graph-
based methods and measures the evidence of a boundary between
two regions by computing (a) intensity differences across the
boundary and (b) intensity differences between neighbouring pix-
els within each region. The internal difference Int (C) of a compo-
nent C 2 V is defined to be the largest weight in the minimum
spanning tree of the component. The difference Dif (C1,C2) between
two components C1,C2 2 V is defined to be the minimum weight
edge connecting the two components.

The input to the algorithm is a graph G = (V,E), with n vertices
and m edges. The output is a segmentation of V into r components
S = (C1, . . .,Cr). The steps of the algorithm are as follows:

(1) Sort E into P = (o1, . . .,om), by non-decreasing edge weight.
(2) Start with a segmentation S0, where each vertex vi is in its

own component.
(3) Repeat step 4 for q = 1, . . .,m.
efect detection and classification in weld radiographic images using geo-
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(4) Construct Sq given Sq�1 as follows. Let vi and vj denote the
vertices connected by the qth edge in the ordering, i.e.,
oq = (vi,vj). If vi and vj are in disjoint components of Sq�1

and the weight w(oq) is small compared to the internal dif-
ference of both those components (this is defined by a a-pri-
ori set parameter k for the algorithm (Felzenszwalb &
Huttenlocher, 2004)), then merge the two components
otherwise do nothing.

(5) Return Sm

It has to be noted here that the segmentation method could be
applied directly to the whole radiographic image, instead of only
the regions given by local thresholding. Experiments showed that
such a preprocessing step improves the total results of detecting
the suspicious segments.
4. Defect classification

The defect detection step in weld radiographs provides a set of
objects that correspond to one of the following classes: non-defect
(false alarm), worm holes, porosity, linear slag inclusion, gas pores,
lack of fusion and cracks. In order to classify each of the obtained
objects, a set of geometrical and texture-based features is extracted
which is then used as input to a multi-class classifier.
Table 2
Texture features.

Nr. Name Formula

T1 Angular 2nd moment PNx

i¼1

PNx

j¼1
½pði; jÞ�2

T2 Contrast PNx�1

n¼0
n2 P

Nx

i¼1

PNx

j¼1;ji�jj¼n
pði; jÞ
4.1. Feature definition

The experienced users use both geometrical and intensity-
based attributes to evaluate a segment in radiographic images. A
system that would try to identify defects should exploit both infor-
mation sources as well. This is the main observation that leads us
to the definition of features that follows.

Initially a set of eight geometric features is defined, which have
been used successfully in the literature (e.g., Liao, 2003; Da Silva
et al., 2005). These are the relative position to the weld bead, the
aspect ratio, the length/area ratio, the area/bounding rectangle ra-
tio, the roundness, the rectangle ratio, the Heywood diameter and
the relative angle to the weld bead. These features and their calcu-
lation formulas are given in Table 1.

Then, a set of 35 intensity-based descriptors are defined for
each segment, many of them have also been used (see, e.g., Mery
& Berti, 2003). These correspond to mean value and standard devi-
ation of the gray level values of all pixels in the object and a set of
33 features obtained using the co-occurrence matrix approach for
texture description.
Table 1
Geometric features.

Nr. Name Symbol/
formula

Explanation

G1 Position P = h/H H: width of weld bead
h:distance of object from middle of weld
bead

G2 Aspect ratio L/e L: the big axis
e: the small axis

G3 Length/Area
ratio

e/A A: area of the object

G4 Area/bound.
rect. ratio

A/Ar Ar: the area of the minimum rectangle that
includes the object

G5 Roundness p2

4pA
p: perimeter of the object

G6 Rectangle or
’box’ ratio

W
H�

W/H*: the width/height of minimum
rectangle that includes object

G7 Heywood
diameter

dH the diameter of a circle having an
equivalent area to that of the object

G8 Angle h Angle of major object axis with line vertical
to weld bead

Please cite this article in press as: Valavanis, I., & Kosmopoulos, D. Multiclass
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The co-occurrence matrix Pkl is defined as follows. The element
Pkl(i,j) of this matrix for a window is the number of times, divided
by NT, that gray-levels i and j occur in two pixels separated by that
distance and direction given by the vector (k, l) or (�k,�l), where NT

is the number of pixels pairs contributing to Pkl.
Texture features correspond to eleven (11) measurements, i.e.,

angular second moment, contrast, correlation, sum of squares, in-
verse different moment, sum average, sum entropy, entropy, differ-
ence variance, difference entropy obtained using the co-occurrence
matrix that was calculated for three interpixel distances (d = 1, 2,
3) (Haralick, Dinstein, & Shanmugam, 1973). These features and
their calculation formulas are presented in Table 2. The features
can be calculated along different directions, e.g., (0,180),
(�90,90) degrees etc.
4.2. Feature selection

It is clear that the features that we mentioned in the previous
section require a lot of computational power, especially the tex-
ture-based ones. There is a need for a trade-off between efficiency
and effectiveness that becomes more clear for images of several
tens of MBytes, which is typical for radiography. We need to use
only those features that provide useful information and reject the
rest, since we expect a great amount of redundancy in the informa-
tion carried by the features. For this purpose we employed a fea-
ture selection method.

Feature selection refers to a method that selects a subset of ori-
ginal features based on an evaluation criterion. For a data set with
N features, there exist 2N candidate subsets. Even for a moderate N,
the search space increases exponentially and very soon becomes
prohibitive for exhaustive search.

To avoid the computationally intractable exhaustive feature
selection we have used a Sequential Backward Selection (SBS)
method, which is employed along with a classifier, as described
in next subsection. It selects from an initial set of input variables
those variables that are mostly related to the output and contain
the causality to the output.
T3 Correlation
1

rxry

PNx

i¼1

PNx

j¼1
ðij � pði; jÞ � lxlyÞ

2

T4 Sum of squares PNx

i¼1

PNx

j¼1
ði� jÞ2 � pði; jÞ

T5 Inverse difference moment PNx

i¼1

PNx

j¼1

1
1þði�jÞ2

� pði; jÞ

T6 Sum average P2Nx

i¼2
i � pxþyðiÞ

T7 Sum variance
�
P2Nx

i¼2
pxþyðiÞ log½pxþyðiÞ�

T8 Sum entropy
�
P2Nx

i¼2
ði� T7ÞpxþyðiÞ

T9 Entropy
�
PNx

i¼1

PNx

j¼1
pði; jÞ log pði; jÞ

T10 Difference variance var (px+y)
T11 Difference entropy

�
PNx�1

i¼0
px�yðiÞ log px�yðiÞ

Note: pði; jÞ ¼ Pklði; jÞ; px ¼
PNx

j¼1
pði; jÞ; py ¼

PNx

i¼1
pði; jÞ; pxþyðkÞ ¼

PNx

j¼1

PNx

j¼1
ıþj¼k

pði; jÞ.
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The SBS starts by constructing a multi-class classifier that uses
all input variables. A popular method to train and test is the 3-
Cross Validation (3-CV) resampling technique and thus the proce-
dure of training and testing the ANN is repeated three times. Each
time, the classifier is trained using 2/3 randomly chosen subjects of
the available dataset and tested using the remaining subjects. Each
of the trained classifiers is evaluated using the mean value of the
classification accuracies (A1, A2, A3) obtained in the corresponding
3-CV training and testing sets. The 3-CV technique outputs a fit-
ness value (%):

F ¼ ðA1 þ A2 þ A3Þ=3 ð2Þ

for the initial classifiers that use all input variables. Next, the proce-
dure subtracts one variable from the total number of variables and
constructs the 3-CV classifiers that use the remaining variables as
input. Each variable is subtracted from the total number of variables
and the classifiers are trained with the remaining ones. The input
variables set that yields the best average of mean accuracies
A1;A2;A3 in the 3-CV sets is the one chosen and is assigned the fit-
ness value Flow, similarly as when using all input variables. The pro-
cedure continues similarly and the classifier that uses M inputs is
derived from the one that uses M + 1 inputs by subtracting the least
informative variable by means of mean accuracy in the 3-CV train-
ing and testing sets and the set of M variables is assigned a fitness
value. This process is repeated until only one variable remains. The
best set of 3-CV classifiers and the corresponding input variables set
are selected based on the values of fitness function. The variables
that are included in the selected set of variables are the ones consid-
ered to be the most robust ones for the classification using the given
classifier.
4.3. Classification

Given the feature vector, the next step concerns the classifica-
tion. There are several multi-class classifiers that can be employed
but the ones selected must be able to cope with non-linearity and
eventually high dimensionality. Among the state of the art algo-
rithms that satisfy these requirements are the Support Vector Ma-
chines (SVM) and the Artificial Neural Networks (ANN).
Fig. 3. The Sequential Backward Selection method for feature selection. The diagram dep
number of features.
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SVM is a promising classification method initially developed for
a binary classification problem (Crammer & Singer, 2002). The SVM
draws an optimal hyper-plane (determined by w, b) in a high
dimensional space that defines a boundary that maximizes the
margin between data samples that belong to the two classes, so
as it generalizes well in unknown data. The decision function for
a feature vector X:

f ðXÞ ¼ w � /ðXÞ þ b ð3Þ

where / is a mapping of feature vectors to the high dimensional
space. The kernel function of the SVM defines the mapping. We
chose to use a newly developed multi-class SVM (Crammer & Sing-
er, 2002) instead of using a binary SVM and adopting techniques for
incorporating it in a multi-class problem, e.g., one versus all or all
versus all. The optimization problem is solved using an efficient cut-
ting plane algorithm that exploits sparseness and structural
decomposition.

The aforementioned SVM is going to be compared with an Arti-
ficial Neural Networks (ANN), which is a feedforward ANN of one
input layer fed with the set of input variables, one hidden layer
of adjustable number of hidden neurons and one output layer of
one neuron (Haykin, 1999). The output layer has seven neurons,
the maximum activated neuron gives the winner class. The tansig
and logsig are used as activation functions in the input and output
layer, respectively, while the ANN can be trained using a method
such as back-propagation (Haykin, 1999).
5. Experiments

The goals of our experiments are: (a) to verify the validity of our
approach, (b) to investigate the effect of reduced feature set with
the SBS method in efficiency and quality of results, and (c) to com-
pare the results obtained by state of the art classifiers.

For our experiments a total of 24 radiographs of ship welds pro-
vided by Technic Control Co. (Poland) were used. The welds were
sized 100 mm � 400 mm and the radiographs featured a resolution
equal to 50 lm/pixel at depth of 16 bits. An experienced NDT con-
sultant annotated the set of 24 images and an equal number of Re-
icts the fitness and the accuracy in training and testing set. The horizontal axis is the

efect detection and classification in weld radiographic images using geo-
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gions of Interest (ROIs) were acquired which contained the fre-
quently met defects of worm holes, linear slag inclusion, gas pores,
lack of fusion, crack and porosity.
Fig. 4. Original, thresholded and segmented image for welds that contain: 1st row: worm
whole area), 3rd row: linear slag inclusion (linear defects at the top), 4th row: crack (lin
(linear at the top).

Table 3
Mean value of sensitivity, specificity and accuracy of SVM and Neural Network in 3-fold c

Metric Classifier Non-defect Worm hole Linear

Sensitivity SVM-43 85.17 94.82 95.45
SVM-7 78.88 80.98 55.11
ANN-43 99.55 99.91 99.91
ANN-7 99.14 99.91 99.57

Specificity SVM-43 98.00 100.00 99.13
SVM-7 85.22 90.91 87.78
ANN-43 94.32 100.00 100.00
ANN-7 94.28 98.94 100.00

Overall accuracy: SVM-43:90.42, SVM-7:70.45, ANN-43:98.51, ANN-7:98.00.

Please cite this article in press as: Valavanis, I., & Kosmopoulos, D. Multiclass
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For preprocessing the Sauvola local thresholding method was
applied using the parameters N = 51, and K = 0.05. After local thres-
holding, a morphological closing filter was applied to remove a
holes (defects almost vertical to the weld), 2nd row: porosity (circle spots over the
ear in the middle), 5th row: gas pores (ovals in middle), and 6th row: lack of fusion

ross validation training sets.

slag Porosity Gas pores Lack of fusion Crack

93.69 100.00 74.71 88.73
80.27 100.00 23.33 74.59
99.74 99.83 99.65 99.65
99.65 99.82 99.65 99.91

98.72 99.29 97.55 96.29
87.94 95.23 69.64 90.69
96.88 100.00 98.40 100.00
95.41 100.00 99.49 98.49
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number of artifacts in the resulted thresholded image and get a
smoothed binary image. Parameters N, and K were manually tuned
to the selected values after extensive experiments on the available
image data. The object detection module performed well and in
average 90% of the defects were detected. This is mainly due to
the use of the local thresholding method that performs well even
when there is no uniform background in the images. The graph-
based segmentation returned each of the detected objects as a dif-
ferent segment colored randomly. We excluded from further pro-
cessing the detected segments outside the weld bead and the
ones with an area greater or smaller than a minimum (50 pixels)
and maximum area (3500 pixels), correspondingly. Examples of
the original images and the results of thresholding and segmenta-
tion are presented in Fig. 4.

Using the set of 11 ROIs, a total of 411 segments were extracted
that corresponded to worm holes (85 cases), porosity (94 cases),
linear slag inclusion (42 cases), gas pores (13 cases), lack of fusion
(57 cases), crack (26 cases) and non-defects, i.e., false positives (94
cases).

The texture features were averaged along horizontal, vertical and
diagonal directions. Given all features, the feature selection method
performed as depicted in Fig. 3, for the case of the ANN. It becomes
clear that the fitness function remains almost the same until we
reach the last seven features, when a rapid drop is observed. There-
Table 4
Mean accuracy for all classifiers in 3-fold cross validation testing sets using 43 and 7
features.

SVM-43 SVM-7 ANN-43 ANN-7 k-NN 43 k-NN 7

Accuracy 84.19 63.74 85.40 84.18 60.34 55.23

Table 5
Confusion matrix for SVM-43.

Classified/real Non-defect Worm hole Linear slag

Non-defect 0.78 0.00 0.00
Worm hole 0.00 0.95 0.00
Linear slag 0.06 0.02 0.93
Porosity 0.04 0.02 0.07
Gas pores 0.02 0.00 0.00
Lack of fusion 0.05 0.00 0.00
Crack 0.04 0.00 0.00

Table 6
Confusion matrix for SVM-7.

Classified/real Non-defect Worm hole Linear slag

Non-defect 0.77 0.00 0.00
Worm hole 0.05 0.72 0.26
Linear slag 0.00 0.00 0.39
Porosity 0.03 0.28 0.35
Gas pores 0.08 0.00 0.00
Lack of fusion 0.05 0.00 0.00
Crack 0.01 0.00 0.00

Table 7
Confusion matrix for ANN-43.

Classified/real Non-defect Worm hole Linear slag

Non-defect 0.77 0.00 0.00
Worm hole 0.00 0.95 0.00
Linear slag 0.06 0.01 0.89
Porosity 0.02 0.03 0.11
Gas pores 0.01 0.00 0.00
Lack of fusion 0.09 0.00 0.00
Crack 0.04 0.00 0.00

Please cite this article in press as: Valavanis, I., & Kosmopoulos, D. Multiclass d
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fore it is estimated to be safe to keep only these features without sig-
nificant influence in our results. These features are namely the G1,
G4, G6 (geometric) and T1 for distance = 1, T5 for distance = 1, T7
for distance = 2 and T10 for distance = 3. It becomes clear from this
analysis that the fusion of both texture and geometric features gives
better results than only one type of features. This supports our claim
that the employment of features from both geometric and texture
domain give better results than features from a single source. Similar
results are expected with the same feature selection method using
an SVM instead of an ANN.

For classification into our seven classes we compared the per-
formance of the Support Vector Machines, the Neural Network
and a k-NN classifier. The latter is still used as a reference method
in the related literature, (e.g., Warren Liao, 2008, 2009). For the
SVM the polynomial kernel gave the best results, although not sig-
nificantly different by the ones given by arctan and Gaussian ker-
nels. The neural network used one hidden layer with variable
number of neurons, ranging from 4 to 20 and was trained using
back-propagation with adaptive learning rate and momentum.
For the k-NN various values for k were tested and for k = 1 we
had the best results.

For training and testing the SVM and Neural Network classifiers
we used the resampling technique of 3-fold cross validation, i.e.,
the classifier was trained and evaluated iteratively three times.
To this end, three equal sized disjoint subsets were randomly allo-
cated in the set of 383 cases, containing samples from each class.
Each time, training was done using the two subsets (training set)
and evaluation using the remaining subset (testing set).

We have trained the SVM and ANN classifiers using 43 and 7
features. To avoid favoring higly populated classes equal number
Porosity Gas pores Lack of fusion Crack

0.02 0.00 0.09 0.12
0.00 0.00 0.00 0.00
0.02 0.00 0.00 0.00
0.96 0.00 0.00 0.00
0.00 0.92 0.06 0.12
0.00 0.08 0.59 0.15
0.00 0.00 0.26 0.62

Porosity Gas pores Lack of fusion Crack

0.01 0.00 0.20 0.27
0.11 0.00 0.00 0.00
0.01 0.00 0.00 0.00
0.85 0.00 0.00 0.00
0.01 1.00 0.33 0.12
0.00 0.00 0.13 0.19
0.00 0.00 0.33 0.42

Porosity Gas pores Lack of fusion Crack

0.02 0.00 0.11 0.15
0.02 0.00 0.00 0.00
0.02 0.00 0.00 0.00
0.93 0.00 0.00 0.00
0.00 0.92 0.00 0.00
0.00 0.00 0.85 0.38
0.00 0.08 0.04 0.46
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Table 8
Confusion matrix for ANN-7.

Classified/real Non-defect Worm hole Linear slag Porosity Gas pores Lack of fusion Crack

Non-defect 0.76 0.00 0.00 0.02 0.08 0.13 0.15
Worm hole 0.01 0.97 0.04 0.03 0.00 0.00 0.00
Linear slag 0.03 0.00 0.80 0.03 0.00 0.00 0.00
Porosity 0.05 0.03 0.15 0.91 0.08 0.00 0.00
Gas pores 0.01 0.00 0.00 0.00 0.77 0.00 0.04
Lack of fusion 0.08 0.00 0.00 0.00 0.08 0.83 0.19
Crack 0.05 0.00 0.00 0.00 0.00 0.04 0.62

Table 9
Confusion matrix for k-NN-43.

Classified/real Non-defect Worm hole Linear slag Porosity Gas pores Lack of fusion Crack

Non-defect 0.64 0.01 0.02 0.00 0.00 0.26 0.19
Worm hole 0.02 0.64 0.37 0.25 0.00 0.00 0.00
Linear slag 0.03 0.19 0.33 0.19 0.00 0.00 0.00
Porosity 0.03 0.16 0.28 0.56 0.00 0.04 0.00
Gas pores 0.02 0.00 0.00 0.00 0.69 0.00 0.00
Lack of fusion 0.20 0.00 0.00 0.00 0.31 0.69 0.04
Crack 0.06 0.00 0.00 0.00 0.00 0.02 0.77

Table 10
Confusion matrix for k-NN-7.

Classified/real Non-defect Worm hole Linear slag Porosity Gas pores Lack of fusion Crack

Non-defect 0.61 0.00 0.04 0.02 0.15 0.48 0.27
Worm hole 0.00 0.74 0.17 0.15 0.00 0.00 0.00
Linear slag 0.04 0.14 0.37 0.17 0.00 0.00 0.00
Porosity 0.04 0.12 0.41 0.66 0.00 0.07 0.00
Gas pores 0.01 0.00 0.00 0.00 0.54 0.00 0.15
Lack of fusion 0.26 0.00 0.00 0.00 0.08 0.30 0.38
Crack 0.04 0.00 0.00 0.00 0.23 0.15 0.19
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of samples from each class was used, by random oversampling the
minority classes. In Table 3 we provide some metrics that indicate
the training quality. These metrics are total accuracy (fraction of
cases that are correctly classified), sensitivity per class (fraction
of cases in a class that were correctly classified) and specificity
per class (fraction of cases not belonging to a class that were cor-
rectly not classified to this class).

From Table 3 we infer that the training of the SVM when using
reduced feature set seems not as good as the training of the ANN
using the same features, which can affect its generalization ability.
This can be expected since the features were selected using an ANN
and the comparison is rather unfair but we present it for reference
purposes, to compare performance on a common feature set. For
better comparison we should apply the SBS feature selection using
an SVM classifier but the extreme computational requirements
render this approach practically infeasible (several weeks are re-
quired for the SVM in contrast to several hours for the ANN).

The overall accuracy on the cross validation test sets for the
SVM, ANN and k-NN classifiers using full and reduced feature sets
are given in Table 4. More details for each classifier performance in
testing sets are given in Tables 5–10, where the confusion matrices
are presented.

From the tabulated results and according to our research goals
stated at the beginning of this section we can make several obser-
vations. Our method is promising and it becomes clear that the
generalization ability of both Neural Network and SVM classifier
is very high (both around 85% accuracy). Their results are compa-
rable but we cannot say which is best because the difference is
small and although we have performed many experiments to find
Please cite this article in press as: Valavanis, I., & Kosmopoulos, D. Multiclass
metric and texture features. Expert Systems with Applications (2010), doi:10.10
the optimal tuning we cannot claim that some further optimization
of either method is not possible. Clearly the ANN is trained much
faster than the multi-class SVM and for this reason it can be a pre-
ferrable option. Regarding the k-NN classifier it is clear that, as ex-
pected, the results are significantly inferior in comparison to the
other classifiers which perform much better in the weld classifica-
tion feature space.

The difficult cases seem to be the cracks, the lack of fusion
and the non-defects. The SVM and the ANN using full feature
set recognised correctly 62% and 46% of the cracks, 59% and
85% of the lack of fusion, 78% and 77% of the non-defects corre-
spondingly. From the confusion matrices we notice that many
cracks are mistaken for lack of fusion and vice versa, which is
reasonable considering their visual similarity in radiographs.
The non-defects due to their intra class variability may be mis-
taken as instances of any class.

The results obtained in testing sets using the reduced feature
set provide almost as high overall accuracy as the full feature set
for the case of the ANN but were not as good for the case of the
SVM mainly because the feature selection procedure favors the
ANN, as mentioned earlier. Some variations in the sensitivity of
specific classes are possible (e.g., cracks or gas pores), which reflect
the changed structure of the feature space. The savings in feature
computation were approximately 80% when we used the reduced
set of seven features. The full set processing of a region of approx-
imately 30 MB approximately four minutes using a Intel Dual Core
2 GHz PC with 4 GB memory. A good trade-off in production has to
consider the cost of time and how important these defects are for
the quality and safety of the produced components.
defect detection and classification in weld radiographic images using geo-
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6. Conclusions

We have presented promising results for a novel system for
multi-class defect detection and classification in weld radiographs
using both geometric and texture features to capture the visual
properties. For preprocessing we have used local thresholding fol-
lowed by graph-based segmentation. The defects were classified
using the state of the art multi-class SVM, and Neural Network
classifiers. We have also investigated the effect of feature selection
and showed that it is possible to reduce computation time signifi-
cantly without seriously affecting overall accuracy. As feature def-
inition and classification techniques evolve the proposed overall
strategy is expected to provide better results as well.

In the future, we aim to investigate the method in many more
images and eventually create a public dataset which will be able
to be used for algorithm evaluation.
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