
A PROTOTYPE TOWARDS MODELING VISUAL DATA USING DECENTRALIZED
GENERATIVE ADVERSARIAL NETWORKS

Dimitrios Kosmopoulos

University of Patras
dkosmo@upatras.gr

ABSTRACT

Decentralized computation is crucial for training on large data
sets, which are stored in various locations. This paper pro-
poses a method for collaboratively training generative adver-
sarial networks (GANs) on several nodes to approach this
problem. Each node has access to its local private dataset
and model, but can influence and can be influenced by neigh-
boring nodes. Such an approach avoids the need of a fusion
center, offers better network load balance, higher robustness
to network errors and improves data privacy. This work pro-
poses an initial approach for decentralized GAN network op-
timization which is based on discriminator exchange among
neighbors using an information gain criterion. We present our
initial experiments to verify whether such a decentralized ar-
chitecture can provide useful results.

Index Terms— decentralized learning, adversarial net-
works

1. INTRODUCTION

Distributed computation is crucial for training on large data
sets, which are stored in various locations. Many state-of-the-
art learning algorithms are rather simple, but base their accu-
racy on the quantity of the data they use to train and nowadays
it is actually the amount of training data that makes a model
more effective than the sophistication of the model itself [1].
Most often such data are acquired locally in a decentralized
way by sensors, or personal devices.

Sharing local information with a central processor can be
inefficient or even unfeasible, due to the large size of the net-
work and data volume, time-varying network topology, band-
width and energy constraints, or privacy issues. Performing
the optimization in a centralized fashion may raise robustness
concerns as well, since the central processor represents an sin-
gle point of failure. This is very often the case for visual data
(images and videos), which are produced in large volumes,
stored locally and are difficult to transfer due to their size.
The solution could be to have models that would be trained
locally and then communicate with each other to learn better
representations.

In this paper we propose a decentralized method for train-
ing generative networks. For the generative model for each
node we use the generative adversarial network (GAN) [2]. In
each node two models are trained simultaneously: a genera-
tive modelG that captures the data distribution, and a discrim-
inative model D that estimates the probability that a sample
came from the training data rather than the generative model.
The training procedure forG is to maximize the probability of
D making a mistake. This framework corresponds to a min-
imax two-player game. In the space of arbitrary functions G
and D, a unique solution exists, with G recovering the train-
ing data distribution and D equal to 0.5 everywhere.

The GANs have several benefits, such as, their ability to
generate samples faster than fully visible belief nets (e.g. Pix-
elRNN [3], or WaveNet [4]), the lack of any Monte Carlo ap-
proximations to train and generation using a single pass un-
like the Boltzmann machines [5], the lack of deterministic
bias and easier use of latent variables compared to variational
autoencoders [6], the relaxation of the invertibility condition
compared to nonlinear ICA (e.g. [7]).

The GANs have become popular and have been applied to
several problems, such as, shape inpainting [8], image trans-
lation [9], object detection [10], scene generation [11] and
many others.

Our contribution is a framework to employ adversarial
networks in a decentralized setting, where each network is
trained locally, but communicates with its neighbors to en-
hance itself. The following assumptions hold: i) the network
is modeled as a symmetric and sparse graph; ii) agents know
their local data only, which is adequate for training, iii) only
inter-node communications between single-hop neighbors are
possible, and iv) the node-specific GANs have the same struc-
ture. The goal here is to present a prototype and to verify ex-
perimentally whether the proposed method leads the overall
network to stable and meaningful states. We verify it for the
MNIST dataset. We are not aware of any other similar work
in the literature doing decentralized learning using GANs.

The rest of the paper is structured as follows: in section 2
we presented the prior work related to this paper. Section 3
presents the proposed methodology, which is followed by the
experimental results in section 4. Finally, section 5 concludes
this paper.

2. RELATED WORK

The value of doing optimization in a decentralized fashion
has been recognized for several decades (e.g., [12]). Decen-
tralized optimization is very attractive in applications where
data are collected by agents, and the communication to a fu-
sion center is of high overhead or may compromise privacy.
The recent research interest in big data processing also mo-
tivates the introduction of decentralized optimization to ma-
chine learning. Most works on this topic is devoted to opti-
mization of a sum of convex functions, where the assumption
on subgradient existence is essentially used.

A particular formulation of a distributed optimization
problem refers to the case where the optimization cost is ex-
pressed as a sum of functions and each function in the sum
corresponds to an agent. In this formulation the agents inter-
act subject to a communication network, usually modeled as
a directed/undirected graph. A solution to this problem was
proposed in [13]. However, GANs are far from being convex.
More recent solutions which relax the convexity assumption
have been proposed as well, but typically make additional
assumptions, e.g., [14] assumes equality constraints, [15] as-
sumes broadcast communication etc. However, it is not clear
how these constraints can be applied to GANs. An additional
problem is that for each local network different parts of the
captured structure are reflected by different filters in a random
fashion, and therefore it is hard to find the correspondences
among the gradient coefficients of different nodes. Therefore
the propagated gradients as implied by the above methods
would only translate to noise for the receiving nodes.

Related work on GANs operating in a decentralized fash-
ion practically does not exist. There are however a few works
that do essentially parallel processing assuming synchronous
communication among different nodes. The main idea is to
exchange discriminators/generators among the nodes during
training. Ghosh et al [16] use multiple agents each of them
running a separate generative model. All generative models
are trained in pair with the same single discriminative model.
Furthermore, the first layers of all the generative models are
tied. The objective function used, enforces diversity between
different models. The approach is very interesting, however
for decentralized settings these assumptions are too tight. In
contrast, we don’t assume any tied weights. The assumption
of a single discriminative model is relaxed in our work, be-
cause it is against having a decentralized learning method.

In Liu and Tuzel [17] use a pair of generative adversarial
nets, each responsible for generating images in a separate do-
main (e.g., color and depth images). The authors show that
by enforcing a simple weight-sharing constraint, they learn to
generate pairs of corresponding images without existence of
any pairs of corresponding images in the two domains in the
training set. The weights are shared between first layers of the
generative and the last layers of the discriminative networks.
Again, such a setting is too restrictive for decentralized learn-

ing and the problem of calculating the joint distribution of
multidomain images is different from our problem which uses
a single domain.

Im et al [18] propose a framework, which is the most sim-
ilar to ours. They train many GANs or their variants simul-
taneously, exchanging their discriminators randomly. This
extends the two-player game into a multiplayer game. They
claim that this eliminates the tight coupling between a gener-
ator and discriminator, leading to improved convergence and
improved coverage of modes. They also propose an improved
variant of the recently proposed Generative Adversarial Met-
ric and show how it can score individual GANs or their collec-
tions under the GAP model. The approach is interesting for
parallel processing, however the requirement of having avail-
able all the discriminators along the whole network does not
promote a decentralized approach and introduces a big com-
munication overhead. Our work differs from theirs in the fol-
lowing points: (a) we do not assume a fully connected graph
which is not applicable in decentralized settings and (b) we
exchange discriminators randomly as well, but we propose an
information gain criterion and avoid using the uniform ran-
dom distribution for selecting the discriminator.

3. METHODOLOGY

3.1. Generative Adversarial Networks

In the typical Generative Adversarial Networks (GAN) set-
ting, the goal is to learn the generators distribution pg over
data x [2]. To this end we define a prior on input noise
variables pz(z), then represent a mapping to data space as
G(z; θg), where G is a differentiable nonlinear function with
parameters θg . We also define a second differential nonlinear
functionD(x; θd) that outputs a single scalar. D(x) represents
the probability that x came from the data rather than pg . We
train D to maximize the probability of assigning the correct
label to both training examples and samples from G. We
simultaneously train G to minimize log(1 − D(G(z))). In
other words,D andG play the following two-player minimax
game with value function V (G;D):

min
θG

max
θD

V (G;D) (1)

V = Ex∼pdata(x)[logD(x)] + Ez∼pz(z)[log(1−D(G(z)))]
(2)

The equilibrium is reached by updating the D ascending
the stochastic gradient (Eq.(3)) and then updating the G by
descending its stochastic graqdient (Eq.(4)).

∇θd
1

m

m∑
i=1

[logD(xi) + log(1−D(G(zi)))] (3)

∇θg
1

m

m∑
i=1

log(1−D(G(zi))) (4)

The proof of convergence is an open issue, however by
following some architectural guidelines it is possible to reach
meaningful solutions.

3.2. Decentralized GAN

We propose a framework to employ adversarial networks in
a decentralized setting, where each network is trained locally,
but communicates with its neighbors to enhance itself. We
assume a sparse connectivity, each node is connected with a
small percentage of neighbors.

In our scenario we seek to minimize the function:

min
θg,θd

K∑
k=1

Vi(θ
k
g , θ

k
d) (5)

where K is the total number of nodes. It is the sum of the
functions defined locally in the typical GAN problem (see
Eq.(2)), one for each node.

The overall process for a single node is given by Algo-
rithm 1. Most of the optimization refers to the standard GAN
learning algorithm (lines 3-5, 7-8). We used an application-
specific threshold for the loss function of D, which gave bet-
ter results and which is typically reduced with the number of
epochs. Then the decision to consider one of the neighbors or
not, is taken by sampling a binomial pdf (line 9). In case that
we decide to consider a neighbor, the exact one is chosen by
sampling a discrete pdf. To this end we define the Kullback-
Leibler divergence between the discriminator Dk of the cur-
rent node and the discriminator Dj of the neighbor j given
the noisy samples zi,...,zm:

DKL(Dj ||Dk) =

m∑
i=1

Dj(Gk(zi)) log
Dj(Gk(zi))
Dk(Gk(zi))

(6)

Then the discriminator to train the generator against is se-
lected by sampling a discrete probability distribution p(D),
which is given for each discriminator Dj by:

p(Dj) =
DKL(Dj ||Dk)∑

j′∈N(k)

DKL(Dj′ ||Dk)
(7)

This selection policy is equivalent to stochastically selecting
to be influenced the node that gives the maximum information
gain. In other words the generator is stochastically chosen
to be trained against the neighbor j whose discriminator Dj

gives the maximum deviation from the discriminator Dk of
the current node. This is expected to promote uniform train-
ing throughout the network.

Algorithm 1 Training algorithm for one network node
1: for i = 1 to TrainingCycles do
2: while Loss > LossThres(i) do
3: Sample batch of m noise samples z1, ..., zm from

noise prior pg(z)
4: Sample batch of m examples x1, ..., xm from noise

prior pdata(x)
5: Update the discriminator by ascending its stochastic

gradient according to Eq.(3)
6: end while
7: Sample minibatch of m noise samples z1, ..., zm from

noise prior pg(z)
8: Update θg by descending its stochastic gradient ac-

cording to Eq.(4)
9: if Sample(ConsiderNeighbors) == true then

10: Read θjd from neighboring nodes
11: Select the neighbor j0 to use, by sampling the dis-

crete pdf defined by Eq.(7)
12: Update θg by descending its stochastic gradient ac-

cording to Eq.(4) using Dj0(G(zi))
13: end if
14: end for

4. EXPERIMENTS

In this section we report the experiments we did so far to
verify the validity of the proposed method. To this end we
have used for our experiments the well-known dataset MNIST
[19] which is extensively used for prototype evaluation. The
MNIST database of handwritten digits, has a training set of
60,000 examples, and a test set of 10,000 examples. It is a
subset of a larger set available from NIST. The digits have
been size-normalized and centered in a fixed-size image.

We have set up a network of five collaborating nodes as
in Fig. 1. In each of them a GAN operates using an approach
similar to that of [20], however the GANs do not have to fol-
low the same architecture in each node. Each node can see
only 10,000 samples and these samples are unique for each
node. The images have been normalized to [-1,1] and tanh
has been used for the output layer of the generator. The noise
sampling was based on the Gaussian distribution with zero
mean and σ=1. We used batches of only real or only noise
data and we didn’t mix them. We added noise of zero mean
and of standard deviation of 0.2 for the labels of real and noisy
data, which is expected to give better results [21].

For training the D we used stochastic gradient descent,
while for training the G we used the Adam optimizer [22].
The threshold in the while-loop in Algorithm 1 was set to de-
crease according to 1/n from an initial value, where n is the
epoch number. The probability of considering a neighbors’D
was set to 0.5. A series of three fractionally-strided convolu-
tions convert the 100-dimensional z input into a 20x20 pixel
image by G. We followed the architectural guidelines of [20]

Fig. 1. Experimental network graph demonstrating the neigh-
borhood relations among node-specific GANs.

without fully-connected or pooling layers and with ReLU ac-
tivation in generator for all layers except for the output, which
used tanh. For D we used LeakyReLU activation in the dis-
criminator for all layers and batchnorm in both the generator
and the discriminator. Fig. 2 gives the GAN architecture. In
Fig. 3 we present qualitative results of the generator for each
of the five nodes.

Furthermore, for quantitative evaluation, we have used the
trained discriminators to train a multiclass SVM, which we
then used to classify the test images. We introduced each im-
age as input to the discriminators and used the flattened out-
put in each layer as (8049-dimensional) features vectors. The
same process was followed for each of the network nodes.
Exactly the same process was used for the second experiment
with the difference that the discriminator was selected based
on the information gain criterion. The results are presented in
Table 1. The exchange of discriminators leads to better solu-
tions than standalone nodes. The use of the information gain
criterion leads to more homogeneous results among nodes and
to even better representation. The results are behind the state
of the art of 0.23% error rate [23]. The relatively high error
rate may be justified by the fact (a) that we did not do exhaus-
tive cross validation to find the GAN structure or the SVM
that give the best results, (b) the rather low number of epochs
we run the GAN - less than 80, and (c) by the relatively low
amount of training data for each node. However, in the first
place our goal was not to compete against the state of the art
classification methods for MNIST, but (a) to present a method
that reaches an equilibrium that provides reasonable results
and (b) to demonstrate the value of selecting D based on in-
formation gain compared to uniform sampling. Both of these
goals have been demonstrated. In both settings (with and
without information gain selection) all the parameters were
identical, so that the methods were comparable.

5. CONCLUSIONS

We have presented our first steps towards learning generative
models using a decentralized GAN network. We have de-
scribed the method and presented some initial results on the
MNIST dataset. This is the first such work that we are aware
of. The benefits of implementing such architectures are obvi-
ous for the image processing community. The validity of the
method has been demonstrated experimentally and the results

node stand uniform inform.-gain
number alone selection selection

1 3.15 2.71 2.22
2 3.35 3.12 2.41
3 3.45 3.14 2.73
4 3.22 2.72 2.54
5 3.55 3.12 2.60

Table 1. Error rates (%) for each node for the MNIST dataset
when using the features generated by the discriminator of
each separate node for feeding an SVM. Three separate cases
are displayed: nodes working alone, nodes exchanging dis-
criminators using uniform sampling, and the proposed selec-
tion based on the information gain.

Fig. 2. Architecture of a GAN node in our MNIST experi-
ments.

Fig. 3. Sample results of the generators on the five nodes after
training

are promising. At this stage the size of the network is limited
by the rather small size of the dataset, as well as the effects of
the communication delays. We plan to extend evaluation on
much larger networks using much bigger datasets and we will
analyze convergence for network nodes based on connectivity
and private dataset size. Furthermore, the proposed network
is vulnerable to malfunctioning or malicious nodes and there-
fore further investigation is required on robustness issues.

6. REFERENCES

[1] A. Halevy, P. Norvig, and F. Pereira, “The unreasonable
effectiveness of data,” IEEE Intelligent Systems, vol. 24,
no. 2, pp. 8–12, March 2009.

[2] Ian Goodfellow, Jean Pouget-Abadie, Mehdi Mirza,
Bing Xu, David Warde-Farley, Sherjil Ozair, Aaron
Courville, and Yoshua Bengio, “Generative adversar-
ial nets,” in Advances in Neural Information Process-
ing Systems 27, pp. 2672–2680. Curran Associates, Inc.,
2014.

[3] Aäron van den Oord, Nal Kalchbrenner, and Koray
Kavukcuoglu, “Pixel recurrent neural networks,” CoRR,
vol. abs/1601.06759, 2016.

[4] Aron van den Oord, Sander Dieleman, Heiga Zen,
Karen Simonyan, Oriol Vinyals, Alex Graves,
Nal Kalchbrenner, Andrew W. Senior, and Koray
Kavukcuoglu, “Wavenet: A generative model for raw
audio.,” in SSW. 2016, p. 125, ISCA.

[5] Geoffrey E. Hinton, A Practical Guide to Training Re-
stricted Boltzmann Machines, pp. 599–619, Springer
Berlin Heidelberg, Berlin, Heidelberg, 2012.

[6] Carl Doersch, “Tutorial on variational autoencoders,”
2016, cite arxiv:1606.05908.

[7] Laurent Dinh, David Krueger, and Yoshua Bengio,
“NICE: non-linear independent components estima-
tion,” CoRR, vol. abs/1410.8516, 2014.

[8] Weiyue Wang, Qiangui Huang, Suya You, Chao Yang,
and Ulrich Neumann, “Shape inpainting using 3d gen-
erative adversarial network and recurrent convolutional
networks,” ICCV, pp. 2317–2325, 2017.

[9] Phillip Isola, Jun-Yan Zhu, Tinghui Zhou, and Alexei A.
Efros, “Image-to-image translation with conditional ad-
versarial networks,” in CVPR, July 2017.

[10] Jianan Li, Xiaodan Liang, Yunchao Wei, Tingfa Xu,
Jiashi Feng, and Shuicheng Yan, “Perceptual genera-
tive adversarial networks for small object detection,” in
CVPR, July 2017.

[11] VSR Veeravasarapu, Constantin Rothkopf, and Ramesh
Visvanathan, “Adversarially tuned scene generation,” in
CVPR, July 2017.

[12] J. Tsitsiklis, D. Bertsekas, and M. Athans, “Distributed
asynchronous deterministic and stochastic gradient op-
timization algorithms,” Automatic Control, IEEE Trans-
actions on, vol. 31, no. 9, pp. 803–812, Sept. 1986.

[13] A. Nedic and A. Ozdaglar, “Distributed subgradient
methods for multi-agent optimization,” IEEE Transac-
tions on Automatic Control, vol. 54, no. 1, pp. 48–61,
Jan 2009.

[14] Ion Matei and John Baras, “A non-heuristic dis-
tributed algorithm for nonconvex constrained optimiza-
tion,” Technical report, The Institute for systems re-
search, University of Maryland, 2013.

[15] Ying Sun, Gesualdo Scutari, and Daniel P. Palomar,
“Distributed nonconvex multiagent optimization over
time-varying networks,” CoRR, vol. abs/1607.00249,
2016.

[16] Arnab Ghosh, Viveka Kulharia, Vinay P. Namboodiri,
Philip H. S. Torr, and Puneet Kumar Dokania, “Multi-
agent diverse generative adversarial networks,” CoRR,
vol. abs/1704.02906, 2017.

[17] Ming-Yu Liu and Oncel Tuzel, “Coupled generative ad-
versarial networks,” in Advances in Neural Information
Processing Systems 29, D. D. Lee, M. Sugiyama, U. V.
Luxburg, I. Guyon, and R. Garnett, Eds., pp. 469–477.
Curran Associates, Inc., 2016.

[18] Daniel Jiwoong Im, He Ma, Chris Dongjoo Kim, and
Graham W. Taylor, “Generative adversarial paralleliza-
tion,” CoRR, vol. abs/1612.04021, 2016.

[19] Yann LeCun and Corinna Cortes, “MNIST handwritten
digit database,” 2010.

[20] Alec Radford, Luke Metz, and Soumith Chintala, “Un-
supervised representation learning with deep convolu-
tional generative adversarial networks,” CoRR, vol.
abs/1511.06434, 2015.

[21] Tim Salimans, Ian J. Goodfellow, Wojciech Zaremba,
Vicki Cheung, Alec Radford, and Xi Chen, “Im-
proved techniques for training gans,” CoRR, vol.
abs/1606.03498, 2016.

[22] Diederik P. Kingma and Jimmy Ba, “Adam: A method
for stochastic optimization,” CoRR, vol. abs/1412.6980,
2014.

[23] Dan Cirean, Ueli Meier, and Jurgen Schmidhuber,
“Multi-column deep neural networks for image classi-
fication,” in Proceedings of the 2012 IEEE Conference
on Computer Vision and Pattern Recognition (CVPR),
Washington, DC, USA, 2012, CVPR ’12, pp. 3642–
3649, IEEE Computer Society.

