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Abstract 
 
This work contributes to the robotic bin-picking 
problem, and more specifically to the problem of 
localizing piled box-like objects. We employ range 
imagery, and use box-like Superquadrics for modeling 
the target objects. Our approach for Superquadric 
segmentation is an extension of the widespread 
recover-and-select framework, which employs only 
region information and therefore suffers from the 
region over- growing problem. Our approach equally 
considers both region and boundary-based 
information for performing the recovery task. 
Extensive experimentation with a variety of target 
object configurations demonstrates that it outperforms 
the recover-and-select framework in terms of both 
robustness and computational efficiency. Moreover, if 
implemented in a parallel hardware environment, our 
approach can operate in real time. 
 
 

1. Introduction 
 

We address the robotic bin picking, in the context of 
which a number of objects of arbitrary dimensions, 
texture and type must be automatically localized and 
grasped by a robotic hand. Here we deal with recovery 
of piled deformable box-like objects, as well as with 
rigid cardboard boxes (fig. 3). Existing industrial 
systems [7], [3] primarily use intensity imagery, and 
although fast, do not operate satisfactorily when the 
objects are jumbled. Furthermore, they heavily depend 
on lighting conditions. We employ range images from a 
laser sensor, which is mounted on a 6 DOF robotic arm 
and moves linearly thus acquiring the top side of the 
configuration.   
Given the input range image, a model-based 
segmentation strategy is invoked to determine the 
number and pose of the objects. Superquadrics are used 
for object modelling. In the next section a description 
of our modelling elements is given; the drawbacks of 
the state-of-the-art for superquadric recovery are shown 
in section 3; our approach is described in detail in 

section 4, and experimental results are presented in 
section 5; finally, section 6 concludes this work. 
 

2. Superquadrics as modeling elements 
 

Superquadrics (SQs) form a family of parametric 3D 
shapes, defined in (1). Points on the surface of an SQ 
are obtained by assigning values to the parameters η 
and ω in the range [−π/2, π/2] and [−π, π] respectively. 

xm(p; η, ω) = a1 cos(η)ε1 cos(ω)ε2 

ym(p; η, ω) = a2 cos(η)ε1 sin(ω)ε2 

zm(p; η, ω) = a3 sin(η)ε1               (1) 

where vector p expresses the SQ model. ε1, ε2 control 
the shape of the SQ, (for our target objects 0.1 ≤ ε1, ε2 ≤ 
0.3). a1, a2, a3 express the size of the SQ along the 
X,Y,Z axes of the model coordinate system. The 
boundary of the SQ surface on the plane Z = −a3, 
models the boundary of the objects’ surface which is 
exposed to the laser sensor. Points on the boundary can 
be obtained by fixing η to the value ηb defined in (2) 
[2], which will be hereinafter referred to as SQ 
boundary. 
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We add parabolic deformation parameters α, b, c, d to 
the default SQ parameter vector, to express slight 
bending of our target objects. If we introduce px, py, pz 

the translation and φ, θ, ψ the rotation angles about the 
Z,Y,Z axes respectively in the general position, then: p 
= (a1, a2, a3, ε1, ε2, α, b, c, d, φ, θ, ψ, px, py, pz). 
For fitting an SQ model to n range points (xsi, ysi, zsi), i 
= 1..n, in the sensor coordinate system Xs,Ys,Zs, the 
function Lr shown in eq. (3) is minimized with respect 
to p, as in [8], [4]. In this equation, F(p; xs, ys, zs) is the 
SQ inside-outside function [4]. 
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2. Recover-and-select for superquadric 
segmentation 
 



The most widespread approach for recovering multiple 
SQs from range data, is the recover-and-select 
paradigm [6], [4]. Given an input range image, image 
segmentation is performed via maximization of the 
posterior probability of the segmentation parameters 
(the models, and their parameters). Firstly, a hypothesis 
about the actual values of the segmentation parameters 
is generated, then the generated hypothesis is refined. 
The hypothesis generation stage, performs a rough 
estimation of the segmentation parameters: Models are 
placed in the input range image in a grid-like pattern of 
small cells. In this way each model is associated with 
some image points (seed region,-fig.2c). 
The hypothesis refinement stage comprises the classify-
and-fit and model selection processes. The former 
locally refines the parameters of existing models, by 
interweaving image point classification to models with 
model parameter estimation. The iterative region 
growing approach is employed for this purpose [1], [6]. 
The model selection process updates the number of 
models in the image, by retaining only those models 
which allow for simple and accurate representation. 
The two processes are invoking iteratively, until no 
significant change in the parameters of the remaining 
models can be performed [6]. 
The region growing is generally robust against abrupt 
noise but it is not reliable on the boundaries of the 
objects (region over-growing). This problem is 
implicitly addressed in [4] by: (i) frequently invoking 
the model selection process, which rejects models 
crossing object boundaries, and (ii) initializing a large 
number of seeds inside the object boundaries, so that 
despite rejections, enough models are left available 
(inside the objects) for further growing. However, we 
have seen in our tests that the model overgrowing 
problem is still present (fig. 2d).  
 

3. Box-like SQ recovery 
Our approach for SQ segmentation, explicitly addresses 
the region overgrowing problem by employing except 
of the region information, object boundary information 
into the recovery process.  
Boundary information is generated by applying edge 
detection to the range image I. We employ a 2D edge 
map Ib  for deriving boundary information, a pixel x of 
which is set to one, if the corresponding range point 
I(x) is an object boundary point. 
As the recover-and-select strategy, segmentation 
comprises two stages: Hypothesis generation, and 
hypothesis refinement. Boundary information is taken 
into consideration in both stages of the framework. In 
the hypothesis refinement stage in particular, 
information integration is inspired by a game theoretic 

framework: Parameter refinement is realized by means 
of iterative invocations of two independent parametric 
modules in succession, which provides robustness and 
efficiency [2]: A region module, fits SQ models to the 
range image, assumed they belong to unique objects. A 
boundary module fits the boundary of models to the 
edge map.  
 

4.1 Hypothesis generation 
 

In this stage seed placement is performed via formation 
of closed contours in the edge map. This is realized by 
employing the model-based adaptive contour closure 
approach of [5]. The region of range points contained 
within each closed contour, which can be accurately 
modeled by a boxlike SQ model, is considered a seed. 
Usage of boundary information for seed placement, 
guarantees that seeds do not cross object boundaries on 
one hand and generates one seed per exposed object on 
the other (fig. 2g). (fig.2h) shows the SQ models fitted 
to the seed points and (fig.2i), shows the boundaries of 
the initialized models embedded in the edge map.  
 

4.2 Hypothesis refinement 
 

Given the parameter vectors of all models initialized in 
the previous stage, along with the range image I and 
the edge map Ib, the hypothesis refinement stage deals 
with the recovery of the parameters of each model 
independently. As in the recover-and-select strategy a 
classify-and-fit, and a model selection process are 
employed for model parameter refinement, but the 
implementation differs. 
The iterative classify-and-fit process integrates 
boundary and region information to perform the 
recovery task: Each iteration of this process involves 
invocation of (a) The boundary module, which recovers 
the model boundary utilizing boundary information of 
the edge map Ib. (b) The region module, which recovers 
the model parameters using the range image I. Within 
each of the modules, model parameter recovery is 
interwoven with image pixel classification (each of the 
modules acts as the standard classify-and-fit process on 
its own information domain). The process iterates until 
the parameter vector does not change significantly. 
Decoupled handling of boundary and region-based 
information leads to a decoupled framework for 
superquadric parameter recovery. Boundary 
information of the 2D edge map constrains the pose 
and the dimensions of the boundary of the model’s 
exposed surface on the image plane, expressed through 
subset pb = (a1, a2, px, pz, ψ). Region information 
constrains the subset pr = (py, φ, θ, a, b, c, d). Hence, 
the boundary and region modules respectively update 



pb and pr only, instead of the entire model parameter 
set. The rest of parameters ps = (ε1, ε2, a3) are kept 
constant within the classify-and-fit process. 
Model selection is invoked only once after the end of 
the classify-and-fit process. Incorporation of boundary 
information abolishes the need of embedding model-
selection into classify-and-fit and invoking it 
frequently, unlike in the recover-and-select framework. 

 
Figure 1. The k-th iteration of the classify and fit process 

Boundary module: Boundary finding influenced by 
region information. The module inputs are the edge 
map Ib, the vector pbk (from previous cycle), the model 
parameter subset prk, the ps (constant), as well as the 
region image Irk (2D binary image of equal size to the 
range image, with corresponding pixels belonging to 
object set to 1). Output is the updated SQ model 
parameter subset pbk+1. (fig. 1). The pk = (ps, prk, pbk) 
denotes the model parameter set before the kth cycle. 
Refinement of pk here outputs pk+ and is inspired by [9], 
[2], where we maximize the function L shown in (4), 
(µ1,= µ2 =0.5 are weight constants), with respect to pbk, 
as in eq. (5). 

L(pk, Ib, Irk) = µ1Lb(pk, Ib) + µ2Lr(pk, Irk) (4) 
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Lb is given in (6) and its maximization with respect to 
pbk is equivalent to fitting the model’s boundary of 
exposed surface to the edge map. It is is proportional to 
the sum of squares of Euclidean distances of points on 
the model boundary, embedded in the image plane, 
from their closest edge points. This is expressed in (6), 
where Ibd denotes the Euclidean distance transformed 
image of the edge map Ib. Besides, (x(pk; ηb, ωi), y(pk; 
ηb, ωi)), i = 1...M, ωi = iπ/M express the image 
coordinates of three dimensional points on the 
boundary of the exposed surface of the model pk, given 
by (1), where ηb is given by eq. (2). 

 
Lr is given in (7) and its maximization is equivalent to 
fitting the model’s boundary to the boundary of the 
region of pixels set to 1 in the region image Irk. Irbd 

denotes the Euclidean distance transformed image of 
the boundary of the region of pixels set to 1 in Irk. 

 
Region module: Region growing influenced by 
boundary information Inputs are the range image I, 
the model prk, and the region image Irk (from previous 
cycle) and the pbk+1. Outputs are the prk+1, and Irk+1 (fig. 
1). The vector pk+ = (ps, prk, pbk), denotes the SQ 
model, as is before the kth cycle. 
The region module performs an iterative region 
growing process of two steps: The model fitting step 
estimates the parameter vector prk+1, by maximizing (3) 
with respect to prk, as in (8) (the image coordinates of 
the range points corresponding to the object of interest 
are enclosed by the boundary of the model pk+). 

 
In the classification step the SQ model pk+1 = (ps, prk+1, 
pbk+1) (after the fitting step), and the region image Irk 

are used to generate the updated region image Irk+1. The 
pixels in the neighbourhood of the boundary of the 
region in the region image, which have a small distance 
from the model pk+1, are added in the region of Irk to 
obtain Irk+1.  
Post processing, determines if the recovered model 
corresponds to a graspable object. Such an object is 
characterized by the full exposure of its largest surface 
and thus its boundary. The fitting residual error 
regarding the SQ and the boundary have to be small 
otherwise the object is rejected. 
 

5. Experiments 
 

We have tested the performance of our recovery 
approach using 40 range images corresponding to 
configurations containing sacks, box-like pillows, box-
like objects wrapped in transparent foil, and card-board 
boxes. Representative results are shown in (fig.3).  
For 174 graspable objects in the images, we had 159 
true positives, 6 false positives and 15 false negatives. 
The system failures occur when no boundary 
information exists. This happens when objects of 
similar dimensions are uniformly placed in layers, and 
the distance between them is very small (less than 1 
cm), since then the sensor resolution is not high enough 
to capture boundary information. 
To assess accuracy, we manually isolated the regions 
corresponding to the graspable objects in the images. 
We then measured the average Euclidean distances of 
these points to the corresponding recovered models, 
which was less than 1cm per model on the average. 
Besides, we measured the average Euclidean distance 
between the embedded boundary of the exposed 
surfaces of the recovered models in the image plane, 



and the actual boundary of the exposed surfaces of the 
objects, which was about 1 pixel/object on the average. 
The average time per image needed for the recovery of 
all objects in the image, was about 91 seconds on a 
Pentium 4 2,8GHz PC (using Matlab optimization 
functions), while the recover-and-select framework 
requires about 15 minutes for this task (using a C 
compiler). The average recovery time per object, which 
will be the time required for the complete process if our 
system is implemented in a parallel architecture (where 
the each model is assigned a processor) was about 15 
seconds. 
 

6. Conclusions and future work 
 

We presented an approach for SQ recovery in range 
images of box-like objects. This approach outperforms 
the state-of the-art in superquadric segmentation, in 
terms of all computational efficiency, accuracy and 
robustness, and has been employed in a novel robotic 
system for automatic box-like object unloading.  
Incorporation of boundary information in the 
segmentation process has led to high computational 
efficiency and robustness. 
Our system, is able to recover box-like superquadrics. 
However, it can be easily extended to recover all kinds 
of superquadrics, by (i) incorporating all parameters 
kept constant here, in the optimization processes, and 

(ii) using the superquadric rim defined in [4] instead of 
the SQ boundary for boundary finding. Our initial 
experiments in this direction are very encouraging.  
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Figure 2 Segmentation comparison. The input data: (a) intensity image (b) range image I. The recover and select method: (c) the 
placed seeds (d) the final results. Our method: (e) edge image Ie superimposed on I (f) edge map Ib (g) seeds on image plane, (h) 
initial models based on seeds (i) model boundaries on image plane (j) recovered boundaries (k) recovered 3D models 
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Figure 3 Recovery of (a-d) piled pillows, (e-h) Bags (i-l) cardboard boxes. For each type we illustrate the intensity image, the 
seed placement, the recovered boundaries and the recovered models.  
 
 


