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Abstract—In this work, we propose a framework for classify-
ing structured human behavior in complex real environments,
where problems such as frequent illumination changes and
heavy occlusions are expected. Since target recognition and
tracking can be very challenging, we bypass these problems
by employing an approach similar to Motion History Images
for feature extraction. Furthermore, to tackle outliers residing
within the training data, which might affect severely the train-
ing algorithm of models with Gaussian observation likelihoods,
we scrutinize the effectiveness of the multivariate Student-
t distribution as the observation likelihood of the employed
Hidden Markov Models. Additionally, the problem of visibility
and occlusions is addressed by providing various extensions
of the framework for multiple cameras, both at the feature
and at the state level. Finally, we evaluate the performance
of the examined approaches under real-life visual behavior
understanding scenarios and we compare and discuss the
obtained results.
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I. INTRODUCTION

The field of behavior detection and understanding in video
has been the focus of the interest of many researchers,
mainly because of the vital importance of the related ap-
plications in virtual reality, human-computer interaction and
smart monitoring. Smart monitoring is applicable to large-
scale enterprises like industrial plants, which have a clear
need for automated supervision services to guarantee safety,
security, and quality by enforcing adherence to predefined
procedures. Here, we focus on monitoring the production
line of an automobile manufacturer, which is a rather struc-
tured process in contrast to monitoring stations or airports,
thus being more realistic to believe that it can be modeled
using computer vision and machine learning. The identified
deviations from this process possibly indicate security and
safety related events and will be automatically highlighted.
The complexity of detection and tracking of moving objects
under occlusions in a typical industrial environment requires
more than a single camera and features that will not result
from an error-prone tracker. Furthermore, the high diversity
and complexity of the behaviors that need to be monitored
require new learning methods that will be able to fuse
information from multiple streams.

Based on these observations, our work contributes in the
following ways:

• A holistic approach for action representation in every
video frame, which bypasses the problem of object
tracking, that is the proposition of new holistic features.

• A behavior recognition framework based on the afore-
mentioned features, which is extended to solve the mul-
ticamera problem in an endeavor to alleviate visibility
problems and occlusions.

• A means to enhance robustness to outliers, that is the
use of the multivariate Student-t distribution as the
observation likelihood of the Hidden Markov Models
(HMMs).

The rest of this paper is organized as follows: In Section II
we analyze the fusion frameworks and their applicability for
multi-camera behavior recognition, as well as the Student-
t observation model, which aims to enhance robustness to
outliers. In Section III we explain our holistic approach for
action representation in each frame and describe the feature
extraction method. The experimental results are given in
Section IV. Finally, Section V concludes the paper.

II. ROBUST MULTI-VIEW LEARNING

The goal of automatic behavior recognition may be
viewed as the recovery of a specific learned behavior (class
or visual task) from the sequence of observations O. Each
camera frame is associated with one observation vector and
the observations from all cameras have to be combined
in a fusion framework to exploit complementarity of the
different views. The sequence of observations from each
camera composes a separate camera-specific information
stream, which can be modeled by a camera-specific HMM.

The HMM framework entails a Markov chain comprising
a number of, say, N states, with each state being coupled
with an observation emission distribution. The EM (or
Baum-Welch) algorithm is very popular for training HMMs
under a maximum-likelihood framework. In a multicamera
setup each sensor stream can be used to generate a stream of
observations. The ultimate goal of multicamera fusion is to
achieve behavior recognition results better than the results
that we could attain by using the information obtained by the



individual data streams (stemming from different cameras)
independently from each other.

Among existing approaches Feature fusion is the simplest;
it assumes that the observation streams are synchronous.
This synchronicity is a valid assumption for cameras that
have overlapping fields of view and support synchronization.
For streams from C cameras and respective observations at
time t given by o1t,..., oCt, the proposed scheme defines
the full observation vector as a simple concatenation of the
individual observations:

ot = {oct}Cc=1 (1)

Then, the observation emission probability of the state
st = i of the fused model, when considered as a k-
component mixture model, yields:

P (ot|st = i) =

K∑
k=1

wikP (ot|θik) (2)

where wik denotes the weights of the mixtures and θik the
parameters of the kth component density of the ith state
(e.g. mean and covariance matrix of a Gaussian pdf). Both
training and testing are performed in the typical way using
the obtained concatenated vectors.

In the state-synchronous multistream HMM [1] the
streams are assumed to be synchronized. Each stream is
modeled using an individual HMM; the postulated stream-
wise HMMs share the same state dynamics (identical states,
state priors, transition matrices, component priors). Then,
the likelihood for one observation is given by the product
of the observation likelihood of each stream c raised to an
appropriate positive stream weight rc [1]:

P (ot|st = i) =
∏

c=1..C

[

K∑
k=1

wikP (oct|θik)]rc (3)

The weight rc is associated with the reliability of the
information carried by the cth stream.

Another alternative is the parallel HMM [2]; it assumes
that the streams are independent of each other, and, hence
we can train one individual HMM for each stream in the
typical way. This HMM-type model can be applied to
cameras that may not be synchronized and may operate at
different acquisition rates. Similar to the synchronous case,
each stream c may have its own weight rc depending on
the reliability of the source. Classification is performed by
selecting the class that maximizes the weighted sum of the
classification probabilities from the streamwise HMMs, i.e.
class assignment is conducted by picking the class l̂ with:

l̂ = argmax
l

([

C∑
c=1

rclogP (o1...oT |λcl)]) (4)

where λcl are the parameters of the postulated streamwise
HMM of the cth stream that corresponds to the lth class.

The multistream fused HMM (MFHMM) is another
promising method for modeling of multistream data [3]
with several desirable features: a) State transitions do not
necessarily happen simultaneously, which makes the method
approapriate for both synchronous and asynchronous camera
networks; b) it has simple and fast training and inference
algorithms; c) if one of the component HMMs fails due
to noise or some other reason, the rest of the constituent
HMMs can still work properly; and d) it still retains the
crucial information about the interdependencies between
the multiple data streams, which coupled HMMs tend to
neglect. Similar to the case of parallel HMMs, the class that
maximizes the weighted sum of the log-likelihoods over the
streamwise models is the winner.

As far as outliers are concerned, they are expected to
appear in model training and test data sets obtained from re-
alistic monitoring applications due to illumination changes,
unexpected occlusions, unexpected task variations etc, and
may seriously corrupt training results. Here we propose the
integration of the Student-t distribution in our fusion models
to address the problem.

The probability density function (pdf) of a Student-t dis-
tribution with mean vector µ, positive definite inner product
matrix Σ, and ν degrees of freedom is given by:

t (xt;µ,Σ, ν) =
Γ
(
ν+p
2

)
|Σ|−

1
2 (πν)

− p
2

Γ
(
ν
2

)
{1 + d (xt, µ; Σ) /ν}

ν+p
2

(5)

where Γ(.) denotes the gamma function and d the Maha-
lanobis distance. The heavier tails of the Student-t distri-
bution compared to the Gaussian ensure higher tolerance
to outliers. The Gaussian distribution is actually a special
case of the Student-t for ν → ∞. Recently, it has been
shown that the adoption of the multivariate Student-t dis-
tribution in the observation models allows for the efficient
handling of outliers in the context of the HMM framework
without compromising overall efficiency [4]. Based on that
we propose the following adaptations in the above fusion
schemes: For the feature fusion, synchronous, parallel and
multistream models we use the student pdf as predictive
function for the streamwise models. We use a modified EM
training algorithm and solve numerically to obtain ν. For the
interstream fusion model we employ a mixture of Student-t
functions to increase robustness.

III. FEATURE EXTRACTION

The features are calculated as follows: Firstly we perform
background modeling. We use the foreground regions to
represent the multi-scale spatiotemporal changes at pixel
level. For this purpose we use a concept proposed in
[5], which is similar to Motion History Images, but has
better representation capabilities as shown therein. The Pixel



Change History (PCH) of a pixel is defined as:

Pς,τ (x, y, t) =


min(Pς,τ (x, y, t− 1) + 255

ς , 255)

ifD(x, y, t) = 1
max(Pς,τ (x, y, t− 1)− 255

τ , 0)
otherwise

(6)
where Pς,τ (x, y, t) is the PCH for a pixel at (x, y),

D(x, y, t) is the binary image indicating the foreground
region, ς is an accumulation factor and τ is a decay factor.
By setting appropriate values to ς and τ we are able to
capture pixel-level changes over time.

To represent the resulting PCH images we propose use
of Zernike moments. Zernike moments are very attractive
because of their noise resiliency, their reduced information
redundancy and their reconstruction capability. The complex
Zernike moments of order p are defined as: (see for example
[6]):

Apq =
p+ 1

π

∫ 1

0

∫ π

−π
Rpq(r)e

−jqθf(r, θ)rdrdθ (7)

where r =
√
x2 + y2 and θ = tan−1(y/x) and

−1 < x, y < 1 and:

Rpq(r) =

p−q
2∑
s=0

(−1)s
(p− s)!

s!(p+q2 − s)!(
p−q
2 − s)!

rp−2s (8)

where p − q = even and 0 ≤ q ≤ p. The higher the order
of moments that we employ, the more detailed the region
reconstruction will be, but also the more processing power
will be required. Limiting the order of moments used is
also justified by the fact that the details captured by higher
order moments have much higher variability and are more
sensitive to noise.

IV. EXPERIMENTS AND RESULTS

We experimentally verified the applicability of the de-
scribed methods. For this purpose, we have acquired some
very challenging videos from the production line of a major
automobile manufacturer.

A. Experimental setup

The production cycle on the production line included
tasks of picking several parts from racks and placing them
on a designated cell some meters away, where welding
took place. Each of the above tasks was regarded as a
class of behavioral patterns that had to be recognized. The
information acquired from this procedure can be used for
the extraction of production statistics or anomaly detection.
Partial or total occlusions due to the racks made the clas-
sification task difficult to effect using a single camera and
therefore two synchronized, partially overlapping views are
used. The workspace configuration and the cameras’ and
racks’ positioning is given in Fig. 1. The work cycle that we

Figure 1. Depiction of workcell

sought to model, despite the noise and the several outliers,
(e.g. persons walking into the working cell, vehicles passing
by, etc), remains a structured process and is a good candidate
to model with holistic methods.

The behaviors we were aiming to model in the examined
application are briefly the following:

1) One worker picks part #1 from rack #1 and places it
on the welding cell.

2) Two workers pick part #2a from rack #2 and place it
on the welding cell.

3) Two workers pick part #2b from rack #3 and place it
on the welding cell.

4) A worker picks up parts #3a and #3b from rack #4
and places them on the welding cell.

5) A worker picks up part #4 from rack #1 and places it
on the welding cell.

6) Two workers pick up part #5 from rack #5 and place
it on the welding cell.

7) Welding: two workers grab the welding tools and weld
the parts together.

For our experiments we have used 20 sequences repre-
senting full assembly cycles, each one containing at least
one of the seven behaviors. The total number of frames
was approximately 80,000. The annotation of these frames
has been done manually. We have synchronized the cameras
using the time stamps embedded by the camera server of
our ip cameras. We have used cross validation by training
using all scenarios except for one that was used for testing.
For capturing the spatiotemporal variations we have set the
parameters at ς = 10 and τ = 70. Furthermore, we have
used as feature vector the Zernike moments up to sixth
order (excluding four angles that were always constant),
along with the center of gravity and the area, thus having a
very good scene reconstruction without too high a dimension
(31). Zernike moments have been calculated in rectangular
regions of interest of approximately 15,000 pixels in each
image, to limit the processing and allow real time feature
extraction. The processing was performed at a rate of
approximately 50-60 fps.



Figure 2. Success rates obtained using (i)individual HMM from
stream1 (ii)individual HMM from stream2 (iii)feature-level fusion (iii)state-
synchronous HMMs (iv)parallel HMMs and (v)multistream fused HMMs

B. Results

We trained our models using the EM algorithm. We
used the typical HMM model for the individual streams as
well as various HMM fusion approaches, namely feature
fusion, synchronous, parallel and multistream HMMs. We
experimented with the Gaussian observation model as well
as with the multivariate Student-t model. We used three-
state HMMs with a single mixture component per state to
model each of the seven tasks described above, which is a
good trade-off between performance and efficiency. For the
mixture model representing the interstream interactions in
the context of the multistream HMM we use mixture models
of two component distributions.

The obtained results are given in Fig. 2, where the success
rates using (i)individual HMM from stream 1, (ii)individual
HMM from stream 2, (iii)feature-level fusion, (iii)state-
synchronous HMMs, (iv)parallel HMMs, and (v)multistream
fused HMMs, are shown. It becomes obvious that the
sequences of our features and the respective HMMs rep-
resent quite well the assembly process. Information fusion
seems to provide significant added value when implemented
in the form of the multistream fused HMM, and about
similar accuracy when using parallel HMMs. However, the
accuracy deteriorates significantly when using simple feature
level fusion (i.e. concatenation of feature vectors), or state-
synchronous HMMs, reflecting the known restrictions of
these approaches. Finally, the employment of the Student-
t HMM provided some extra accuracy, thus proving its
utility in visual behavior recognition applications, where
outlier robustness is always of interest. In Fig. 3 we present
the confusion matrix for the experiment conducted using
the Student-t distribution. Each cell contains three numbers
which correspond to the respective number of actual tasks i
that were predicted as tasks j by using (i)multistream fusion
/ (ii)individual HMM from stream 1 / (iii)individual HMM
from stream 2. The superiority of the multistream approach
over the individual streams is obvious, while the lower
performance of HMM 1 when it comes to discerning task 1
from task 5 can be justified by taking into consideration the
similar description of the two tasks, as well as the position of
camera 1 (Fig. 1), which provides the corresponding stream
1.

Figure 3. Confusion Matrix

V. CONCLUSION

In this work, we have presented a framework for fusion of
multiple streams and we have applied it for recognition of
visual tasks in an industrial environment using two cameras
viewing the work cell from different angles to avoid occlu-
sions. We have bypassed the challenging problem of tracking
by having an image-based approach and by considering the
foreground pixels. The proposed classification framework is
appropriate for visual behavior recognition tasks and can be
used to extend existing HMM-based behavior recognition
systems to create scalable multicamera systems. Finally,
through the complementarity from multiple views and by
employing an outlier-tolerant observation model based on
the Student-t multivariate distribution, enhancing accuracy
is possible.
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