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Abstract

In this paper we propose an efficient approach towards
the solution of the depalletizing problem, based on active
vision. We describe a system comprising an industrial
robot and a time of flight laser sensor, which performs the
depalletizing task in real time, and independently of
lighting conditions. In our case, the target objects are
solid boxes of known identical dimensions, neatly layered
but with arbitrary orientation within a layer, which are
all placed on a platform. The layered structure of the
target platform allows for two-dimensional imagery. The
system locates the position of the boxes by tracking one of
the corners they expose to the laser source. The system
locates the desired corners by applying the scan line
approximation technique [11], adapted to fit the needs of
our application, to the two-dimensional input data. The
advantages of our system over existing applications are
its simplicity, robustness, speed and ease of installation.

1. Introduction

This paper addresses the depalletizing problem (or
bin picking problem) in the context of which, a number of
objects, of arbitrary dimensions, texture and type must be
automatically located, grasped and transferred from a
pallet, to a specific point defined by the user. The objects
can be either placed on the pallet in a structured manner,
for example, in the case of boxes, when they are placed
on layers, or they can be jumbled. The requirement of a
robust and generic automated depalletizing system stems
primarily from the car and the food industries, where
boxes and sacks of various dimensions, texture, and
weight, either neatly placed, or jumbled, are laid on a
pallet. By the term pallet we mean a rectangular platform
like a table. A grouping of the configurations met at target
pallets which are usually encountered at distribution
centers or automobile industry factories has as follows:
neatly placed identical sacks, jumbled identical sacks,
neatly placed identical cardboard boxes, neatly placed
identical boxlike objects, neatly placed boxlike objects or
cardboard boxes or both, with varying dimensions,
jumbled cardboard boxes, with varying dimensions. In
this paper, we are addressing the third case, according to
which neatly placed cardboard boxes are grasped and
unloaded, but what is notable is that the technique used,
could form a basis for the realization of a more general
solution.

An automated system for depalletizing is of great
importance because it undertakes a task that is very
boring, strenuous and sometimes quite dangerous for

humans. Furthermore, the robust and fast transfer of
goods from an originating pallet to a target position
(pallet, conveyor belt etc.) can accelerate significantly the
logistics-processes in the industry and the warchouses.
Thus much time and labor is saved and the costs are
minimized.

1.1 Related Work

In general, the existing systems can be sorted in
the following categories: systems incorporating no vision
at all, and systems incorporating vision. The majority of
the systems employed in industrial depalletizing
applications so far, do not contain any vision modules.
They usually employ preprogrammed gantry robots for
bulk depalletizing tasks (e.g. [22]. [23]. [25]. [26]. [28]).
Such systems may be much more effective in strictly
controlled environments, (since they are fast and
accurate), but they fail in adverse environments e.g. in a
distribution center, where the pallet’s position is not well-
defined and the objects to be picked may be arbitrarily
jumbled due to human intervention. In the initial attempts
to use visual data, 2D techniques were employed,
combined with additional sensors in the gripper to obtain
the third dimension [14], [15]. These systems were
limited to simple objects with special surface properties,
e.g. identical cylindrical pieces of metal with a ground
surface. Similar techniques are still used in the industry
[24], where a feature-based approach identifies the objects
to be picked by locating on them patterns such as letters
or logos. These logo-tracking techniques are as well used
in three-dimensional imagery [27]. The disadvantage of
these methods is that they have all the problems of
camera-based identification. The matching can fail in the
case that the pattern does not appear, e.g. due to poor
lighting conditions, reflections or dust. Furthermore, this
method needs training for all patterns and is inappropriate
in case that there is no obvious feature. Attempts
incorporating range imagery seem much more promising.
In [2] a structured light range sensor with additional
sensors (force and proximity sensors) on the gripper were
successfully employed, to deal with unloading piles of
postal parcels with very good results. Even if the vision
methods used did not allow for high accuracy, the idea of
usage of range imagery and sensor fusion, resulted in a
relatively efficient system. Nevertheless, the vision
algorithm employed can only deal with planar objects. Its
extension towards more complicated configurations is not
straightforward. The recognition algorithms endorsed on
the other hand, can take from 15 to 45 seconds to detect



the position of only one graspable object at a time.
Additionally, the disturbing of the pallet by the robot
when the recognition system fails, may damage the target
objects. The system of Vayda and Kak [20] deals with
depalletizing of jumbled cylinders and parallelepipeds of
unknown dimensions with the help of a range sensor. The
authors attempt a complete scene understanding, via
processes originating from artificial intelligence.
According to these methods, size and pose estimation of
target objects are facilitated by virtually extending their
dimensions in the direction away from the sensor until
they physically contact other objects in the scene The
adoption of such methods results in an time-inefficient
system, since the interpretation of complex scenes can
take up to 20 minutes [2] in non-specialized hardware.
The system closer to ours, is the one developed by Chen
and Kak [5]. In both systems, a hypothesis generation for
the existence of a target is based on Feature Sets (vertices
in 3D in [5], corners in 2D here) detection. The
hypothesis verification is performed by hardware in our
case.

A direct comparison in grasping accuracy between
the existing systems and ours is not possible, since no
detailed accuracy measurements are provided by the
systems’ constructors. In the context of layered
depalletizing of boxes, our framework surpasses all the
existing systems as far as the speed, the ease of
installation and the robustness are concerned because 2D -
and thus simpler- image processing is applied.

A detailed description of our approach, as well as
concrete experimental results follow in the subsequent
paragraphs.

2. Depalletizing using a laser sensor

The system comprises a vision system that is
responsible for the detection of the object’s position and
an industrial robot, which grasps the boxes. This system is
based on one time-of-flight laser sensor, which is
mounted on the robot’s arm. The sensor is integrated on
the tool, which performs the boxes’ grasping (gripper)
and is seamlessly attached to the robot’s flange (figure 1).
The laser sensor has specific advantages over cameras,
since the measurements are not affected by environmental
conditions like target objects’ surface reflectance or
lighting. The input data of the vision subsystem, is a set of
two-dimensional points, which are defined as the
intersection of the objects in front of the laser sensor, with
the sensor’s scanning plane, the range of which is
adjustable. The integration of the laser sensor on the
robot-hand allows for accurate data acquisition. Upon the
input data, efficient algorithms that will be subsequently
described are performed, which detect the boxes on the
pallet. The system is characterized by speed, robustness,
accuracy, low cost and ease of installation.

2.1 System configuration

A side view of the whole system and the pallet is
presented in figure 1. The origin of the base coordinate
system (B; X», ¥b , Zb ) is located on the base of the robot.
The relative position and orientation of (B; Xb,¥b,Zb ) to
the world coordinate system (W; Xw, Yw ,Zw ) is known a-
priori [16]. We attach the coordinate systems (T;x:.,y:,
Z:), (S;Xs,¥s,Zs), (F;Xr,¥7,zr) to the robot tool
(gripper) the sensor and the robot flange correspondingly
as depicted in figure 1. We also attach the (C; X..y..z.)
to the identified corner of the box so that x.,y. are
parallel to the box sides. The sensor provides the corner
coordinates in the (S:Xs,y¥s.Zs), and the tool moves
using the coordinates of the box centre transformed in
(T;x¢,y:,2¢). The scanning plane is defined by the axes
Xs,¥s -
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Figure 1. The world (W;xw,¥w,Zw), robot-base
(B;Xp,yb,2Zp), robot-tool (T;x:,y:,z:), robot-flange

(F:xr,yr.zr) and sensor (S;Xs,ys,Zs) coordinate
systems.

If /7, denotes the homogeneous transform matrix
from (I:x;,y:.zi), to (J;x;,y;,2z;) then "7y is
obtained by calibration (see experimental results section),
ST is calculated from the measurement data, and 7 7 is
given by the tool manufacturer.

The approximate position of the pallet P in
(B;Xp,¥b,2p ), the height of the pallet basis  ,, the
layer height L, and the maximum pallet height /.
are also required. These parameters are defined during the
system’s installation phase.

2.2 Operation

The flow diagram of the system is illustrated in
figure 2. Initially the height of the upper layer of the heap
is estimated. The sensor is positioned at distance
T (figure 3b) from the ground where:

Tn= Hhonax + H p - L /2 (1)
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Figure 2. The flow diagram of the overall process

The scanning plane is parallel to the ground and
zs has the direction of zp . The vector y; forms an angle
of approximately 45 degrees with the pallet’s side (figure
3a) in order to achieve higher accuracy (section 3) in the
frequent case that the boxes are neatly placed on the
layers of the pallet.
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Figure 3 (a) The initial robot position — top view (b) The
heap height estimation procedure — side view

The sensor performs a layer scanning and if no
points are detected its height is decreased by Lx. The
procedure is repeated until points are detected in the
scanning area, ¢.g. at position C in figure 3b. From the
acquired range data a scan line is derived and the box
comers are extracted. In the event that no box corners
could be extracted (figure 4a) the sensor is moved and
rotated in order to acquire a better view of the boxes
(figure 4b). Two such predefined movements are
performed and if even now no corners can be detected,
the system asks for human intervention. Otherwise the
detected boxes are grasped and the layer unloading
operation continues until the current layer is empty (no
points appearing in the viewing range of the sensor). Then
the tool goes down to the next layer and the process is
repeated until the height of the tool is less than /7, (that
is, when the pallet is empty).
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Figure 4 (a) The comer identification problem. (b) The
sensor is moved and rotated and the corner(s) is (are)
identified

Every time the sensor identifies a corner the
grasping procedure is initiated. From the detected corner
position, the centre of gravity of the box’s upper surface
G is calculated in (S;Xs,ys.Zzs), and then it is
transformed to (T;X:¢,y:,Z:). The resulting frame is used
to position the gripper onto G. If we attach the coordinate
system (C; X¢,¥c,Zc) to the identified corner of the box
then SXg= (W/2, L/2, 0.1) (case A) or CXg,= (L/2,
W/2, 0.1) (case B) according to the orientation of the box
(figure 5). In (T; x¢,y:,2:) the point G will be given by:

TXG:TTS‘STc‘cXG (2)

The orientation of the box is not known in advance
and unfortunately it is very difficult to use the laser sensor
for finding it, because in many cases the gap between the
neighbouring boxes is 2-3mm (smaller than the sensor’s
resolution). Therefore, we send the gripper to the point
where the gripper touches the topside of the box assuming
that the orientation case is B (figure 5). If the actual case
is B the gripper will sense low pressure and it is guided to
€Xg2 . In the case A the gripper senses high pressure (no
edge) and the gripper is sent to Xg . Of course this
solution is not optimal because much time is wasted in the
attempt to find the orientation of the box. Later we will
try to eliminate this procedure by employing a camera for
this purpose.

The system in operation is displayed in figure 6.

box orientation A

gripper

corner

box orientation B

Figure 5. The gripper test position and the orientation
cases in box-grasping
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Figure 6 The system in operation: (a)-(b) heap height
estimation (b) box localization (c) determination of
orientation (d) box grasping (¢) box picking (f) box
placement.

2.3 Identification of box corners from 2D data

This is the core of the system. The input of the
process is a set of planar points which comprise a two
dimensional representation of the current layer of the
pallet. The target of the process is the localization of the
90 degrees corner of the boxes to be grasped by the robot.
In general terms we have to deal with the range image
segmentation problem in two dimensions. From the vast
literature having to do with range image segmentation
based on 2D information (e.g. [1], [4], [7], [11], [21]), an
algorithm should be selected, which should be efficient,
accurate and able to deal with three-dimensional range
data, when, in a future system, the objects on the pallet
are not layered. The algorithm should have some sort of
qualitative capabilities as well in order to detect the
corners’ size. An algorithm that satisfies the requirements
stated above, is the one proposed by Jiang and Bunke
[11], based on the Duda and Hart scan line splitting
method [6], which detects and evaluates crease edges
(discontinuities in range normal vectors.) and step edges
(discontinuities in range values) in range data by using a
scan line approximation technique. The particular
algorithm was selected because of its simplicity and
straight-forwardness, its potential to accurately deal, when
combined with an edge grouping technique [18], with 3D
configurations [9], [10], [11], [12], and finally its time-
efficiency [17], which allows for rapid target detection
when no image processing hardware is employed.

The scan line approximation algorithm splits the
scan line to segments that can be accurately represented
by functions. In figure 7a, a subset of a scan line is

approximated with two curved segments namely
Si(x), f2(x).

From the edge points x; and x; the midpoint
x=(x1+x2)/2 is extracted, with the help of which the

jump and crease edge strengths are calculated as follows:
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Figure 7 (a) Edge Strength Definition (b) The scan line
splitting method

The accuracy in the edge strength value depends
on the selected approximation functions. Our application
induces the selection of linear functions. Thus, initially
we represent each set of 2D points with a linear segment
by means of the Duda and Hart [6] splitting method
(figure 7b). If we suppose that our scan line comprises the
points with labels A-E, a lincar segment is initially
estimated from the end points and the maximum distance
of the line to every point of the scan line is calculated. If
no point has a distance greater than 7y from the
approximation curve, then the process stops for the
particular scan line segment, since it is satisfactorily
approximated. If the maximum distance is bigger than a
predetermined threshold Tz, then the whole process is
repeated recursively e.g. for the scan lines AC and CE.

Problems of the splitting method are the frequent
over-segmentation of the scan line and the not optimal
recovery of the real edge position [11]. The first problem
can be solved with an appropriate selection of the
threshold 7p; in combination with a merge process.
Over-segmentation problems are solved when the
threshold 7 is increased. However, arbitrary increase
in the value of 7 produces the under-segmentation
phenomenon. In order to adjust the value of T we
must have an a priori estimation of the noise level in the
scan line. A solution to the problem is proposed in [3],
according to which for every point of the scan line the
previous and the next point are considered. Upon these
points a straight-line segment is fitted. If the end points of
the group modeled with the line, have an absolute
difference in their y values bigger than two times the
sensor’s resolution R plus its random error E (both
defined by the vendor) the point initially considered is
regarded as belonging to a range discontinuity region and
thus discarded. Otherwise, the approximation error is
calculated. Given N, the number of points of the smooth



regions and €,; (p)the RMSE of the linear segment
corresponding to the point p, the image’s quality measure
p is calculated as

1
P= N_pzel,s ») (5)

Calculate the image-
noise and adjust
threshold

Merge compatible
neighboring segments

For all neighboring
segments calculate
edge strengths and
intersection points

Approximate the Scan
Line with linear
segments and create
initial segmentation

Keep edge information

Model each segment of
the initial segmentation
with application
specific curve (line in
this application)

only for crease edges
with strength around 90
degrees and forward
them to grasping

procedures

|
Figure 8. The layer scanning flow diagram

In our approach the threshold 7, was set to the
value: Tsir= p + R where R is the resolution of the
sensor. As mentioned, the second problem of this initial
segmentation is that the edges generated do not
correspond with accuracy to the real edge points. In order
to realize higher accuracy, the initial segments produced
are being again approximated. A least square fit is
performed to the points comprising the segments
originating from the splitting method. Due to the fact that,
in some cases the over-segmentation problem could not
be alleviated without a merging step, such a step is
introduced by checking whether the angle of the normal
vectors (AON), of least square modeled neighboring
segments is lower than an input parameter.

Figure 8 describes in detail the adopted
segmentation method. The corner position and orientation
and the AON, are then forwarded to the grasping
procedures, which move the gripper and grip the box(es).

3. Experimental results

Experimental setup As already mentioned, the system
incorporates an industrial robot, namely the model KR
15/2 manufactured by KUKA GmbH, a square vacuum-
gripper, which grips the boxes from their top side, and a
time of flight laser sensor namely the model LMS200-
30106, manufactured by SICK GmbH, with resolution
10mm, random error of 5mm and acquisition time 13ms.
The sensor emits a beam, every f degrees, where -o<f<a
[19]. In our experiments, f=0.25 degrees and 0=50
degrees. The system uses a Pentium PC (400 MHz,
256MB RAM), in which the vision software resides, as
well as the necessary hardware needed for the grasping
procedure operation. The system from the software point
of view, comprises the vision module (implemented in
C++), which accepts data from the laser sensor and

calculates the position and orientation of the box(es), and
the Robot controlling module (implemented in KUKA
KRL), which requests correction frames from the vision
module and moves the robot.

The inputs of the system during the initialization
phase are the position of the center of the pallet P (figure
1) relative to the robot Base B coordinate system, the
maximum heap height Hhy ., (figure 3b), the
dimensions /7, and Lp, the coordinate transformation
matrices 7 7s ,7Tr , the sensor’s resolution and its random
error and finally the segments merging threshold. Only
the latter should be extracted by experimentation, (in our
experiments set to 2 degrees). A pallet of
1100mmx600mm was used with /,=1000mm. The
target objects were card boxes of 250mmx350mm with
Ly =150mm. The sensor was placed 300 mm away from
a corner of the pallet.

Calibration In order to calculate the transform matrix
T'Ts we executed a calibration procedure (offline). In this
phase, we had to deal with the 3D — 3D absolute
orientation problem, which is elegantly solved in [8].
According to this solution, when the coordinates of N 3D
points relative both to the sensor and the tool reference
frame are known, the transformation from the tool to the
sensor can be determined by adopting a singular value
decomposition approach. We used 5 3D points whose
coordinates were known in both (S;xs,ys,zs) and
(T;x¢,y:,2z¢). In order to obtain these points, we used a
solid box. The positions of the suction pads, which allow
for gripping the box from the centre of its topside, were
marked. We placed the box in various positions on the
pallet and more specifically on the four corners and the
center of it. For each position of the box, the position of
one of the square box’s corners (consequently the box’s
center) was calculated in (S; X5,y ,Zs). For cach of the
corners, we manually moved the robot’s arm, in such a
way that the suction pads fitted the marks on the topside
of the target box. We noted the tool coordinates provided
by the robot’s console in (T; x;,y:,Z;) and in this respect
we corresponded the coordinates of two coordinate
systems. We have developed a software tool, which eases
the above operation by helping the user to perform all the
necessary actions. From the above, it is evident that the
installation procedure is simple and can be executed
within a reasonable amount of time. In all other systems
known to the authors, the system’s setup is much more
time consuming and strenuous, since it requires
sophisticated calibration procedures, training, or elaborate
hardware installations on the ceiling of the installation
site, or above the pallet.

Algorithm evaluation We verified the algorithm’s per-
formance regarding the accuracy and the speed. In order
to estimate accuracy, a layer scanning was performed 50
times on a layer comprising up to 5 boxes. Many confi-
gurations of boxes were tried (some machine segmen-
tation (MS) outputs are depicted in figure 9). Afterwards,



two human operators examined the data. The operators
identified the boxes, fitted lines to selected points on the
sides of the boxes (they excluded noisy points) and
calculated the corner’s position, orientation and magni-
tude (ground truth-GT). The difference in measurements
between MS and GT is displayed in (Table 1).

same angle (45 degrees) the detection becomes more
accurate. In the experiments conducted, in which the
robot arm was executing linear movements with the
maximum speed and acceleration [16], each box was
grasped in less than 3 seconds, on the average.

Corner Box Corner Position] MS-GT
magnitude | orientation error (mm) corner
error error X v distance
(degrees) (degrees) (mm)
Average 1.60 0.072 1.787 | 1.568 | 2.521
Standard} ) 0.137 1191 | 1.257 | 1.531
deviation|

Table 1. Segmentation algorithm’s accuracy

The speed of the segmentation algorithm was
estimated by executing the layer scanning operation
10000 times. 50 different boxes’ configurations were
tried, each one comprising up to five boxes. For each such
configuration the system ran 200 times. The results are
depicted in table 2.The time nceded for a complete
segmentation of the scan line, which comprises about 300
2D points is 1.56 ms. If we add the 13 ms of the scan line
acquisition time to this quantity we come to the
conclusion that the next graspable box can be detected in
less than 15 ms, due to the fact that more than one boxes
(1.8 on the average according to these experiments) can
be detected in the scan line. This is significantly faster
than any other solution to the problem proposed, up to our
knowledge.

Time

(ms)/hit
Image Quality Calculation 0.41
Scan Line Splitting 0.79
Segment Approximation 0.10
Segments Merging 0.02
Edge Strength Calculation 0.24
Edge Detector (overall process) 1.56

Table 2. Processing time

Overall system’s accuracy and robustness We placed the
model box used in the calibration phase to various
positions on the pallet (figure 10) with the depicted
orientation. The position, and orientation of the box
corner were measured in the tool coordinate system. Then
we directed manually the tool so that the suction pads
coincided with the marks on the box. The difference
between the values observed on the robot’s console and
the calculated ones gave the system’s overall accuracy
measurements. For each position 20 measurements were
executed.

The system proved its robustness by unloading the boxes
every time for positions 1 to 17. In the cases of 16 and 17
the system was able to locate the box only after the
automatic rotation and translation of the tool (due to the
problem described in figure 4). Table 3 displays the
results for positions 1 to 15. It is evident that as the
exposed sides of the box face the laser beam with the
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Figure 9 (a)-(f) The output of the segmentation procedure

in some typical cases (all dimensions in millimeters).
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Figure 10 The measurement positions




Position error Orientation error
(mm) (deg)

Position mean st. dev Mean st. dev
1 14.64 1.66 0.45 0.90
2 14.50 1.85 1.59 1.08
3 15.55 1.03 2.20 1.11
4 14.72 2.48 1.70 1.33
5 15.53 1.92 1.88 0.94
6 15.84 1.55 1.06 0.58
7 15.09 2.95 0.42 0.57
8 15.30 3.06 2.80 1.48
9 16.22 4.57 2.55 1.50
10 18.32 5.23 2.95 1.77
11 14.86 1.62 2.05 1.71
12 16.35 2.44 1.39 1.14
13 16.57 3.42 2.40 1.34
14 17.55 441 2.81 1.84
15 18.25 5.35 2.88 1.80

Table 3 The system accuracy for the positions 1-15.
4. Conclusions and future work

In this paper a mnovel robotic system for
depalletizing boxes was introduced and demonstrated.
The task was executed using an industrial robot and a
laser sensor for hand-eye coordination. The proposed
solution to this problem is remarkably simple, fast and
efficient. The boxes were always identified,
independently of their appearance and of the illumination
conditions. This is a major advantage against the camera-
based solutions.

A variation of Jiang - Bunke range edge detection
algorithm was employed and the corners were identified
with mean accuracy better than 20mm in position and 5
degrees in orientation (mainly due to the systematic error
of the sensor). This performance is sufficient for tasks like
unloading a pallet to a conveyor belt but better accuracy
would be probably desirable if the target position is
another pallet. Therefore currently we try to implement a
fine-localization procedure using a camera mounted on
the robot’s tool. The camera integration aims also to
resolve the box orientation as mentioned in section 2.4.

In our future research we also plan to solve the
problem of grasping piled boxes and piled sacks. Due to
the fact that no layering exists, three-dimensional
information should be extracted. Three-dimensional
information will be obtained by collecting the scan lines
acquired during a movement of the hand of the robot.
Edge detection will be applied to the two dimensional
scan lines and an edge grouping technique will be
employed to extract desired feature sets. The algorithm
presented, is able to deal not only with planar objects, but
also with curved ones. According to this framework, the
scan line approximation technique, should utilize curved
functions [13] and not lincar as in the application
presented in this paper.
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