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Abstract—In this work, we provide a variational Bayesian
(VB) treatment of multistream fused hidden Markov models
(MFHMMs), and we apply it in the context of active learning-
based visual workflow recognition. Contrary to training methods
yielding point estimates, such as maximum likelihood or maxi-
mum a posteriori training, the VB approach provides an estimate
of the posterior distribution over the MFHMM parameters. As a
result, our approach provides an elegant solution towards the
amelioration of the overfitting issues of point estimate-based
methods. Additionally, it provides a measure of confidence in
the accuracy of the learned model, thus allowing for the easy
and cost-effective utilization of active learning in the context
of MFHMMs. Two alternative active learning algorithms are
considered in this paper: query by committee, which selects
unlabeled data that minimize the classification variance, and
a maximum information gain method which aims to maximize
the alteration in model variance by proper data labeling. We
demonstrate the efficacy of the proposed treatment of MFHMMs
by examining two challenging workflow recognition scenarios,
and we show that the application of active learning, which is
facilitated by our VB approach, allows for a significant reduction
of the MFHMM training costs.

1

I. INTRODUCTION

Human behavior understanding in video sequences is a
research field rapidly gaining momentum over the last few
years. This is mainly due to its fundamental applications in
automated video indexing, virtual reality, human-computer
interaction and smart monitoring. Especially, throughout the
last years we have seen an increasing need for assisting and
extending the capabilities of human operators in remotely
monitored large and complex spaces such as public areas,
airports, railway stations, parking lots, bridges, tunnels, etc.
The last generation of surveillance systems was designed to
utilize multiple video streams from heterogeneous sensors to
automatically assess the ongoing activities in large monitored
environments, flagging and presenting to the operator suspi-
cious events as they happen in order to prevent dangerous
situations [1], [2].

In this work, we focus on visual workflow recognition;
workflows are comparatively structured processes, in contrast
to monitoring stations or airports, and it is more realistic
to believe that workflows can be modeled using computer
vision and machine learning. The identified deviations from a
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predefined workflow possibly indicate security and safety re-
lated events and will be automatically highlighted. Distributed
smart workflow monitoring is applicable to mass production
or large-scale enterprises like industrial plants which have a
clear need for automated supervision services to guarantee
safety, security, and quality by enforcing adherence to prede-
fined procedures for production or services. Such supervision
services are frequently of vital importance for the enterprise
because, apart from cost reduction, timely detection of safety
and security concerns may prevent injuries and even fatalities.

The complexity of detection and tracking of moving ob-
jects under occlusions in a typical structured environment
requires more than a single camera and features that will not
result from an error-prone tracker. Multiple cameras provide
a wider coverage of the scene and redundant data that help
solve occlusions and improve accuracy. Furthermore, the high
diversity and complexity of the behaviors which need to be
monitored requires new learning methods that will be able to
fuse information from multiple streams. Finally, the limited
availability in model training data, due to the prohibitively
high costs of capturing and annotating behavioral data from
real (e.g., industrial) installations, necessitates utilization of
an active learning framework, allowing for the exploitation of
unlabeled data to improve the classification performance of
the trained models.

Hidden Markov models (Fig. 1a) are an extremely popular
means of modeling a stream of sequential data, and are vastly
adopted in behavioral analysis applications [2]. Using infor-
mation from multiple streams of data pertaining to the same
sequence of events has been shown to allow for a significant
performance enhancement of HMM-based event analysis and
detection models [3]–[6]. Modern multimedia capturing and
processing technologies have rendered insignificant the main
hurdle of the additional computational requirements imposed
by multisensor systems. [2]. However, the reliability of the
sensors is never explicitly considered. Hence, in a video
surveillance system that employs multiple sensors, the problem
of selecting the most appropriate sensor or set of sensors to
perform a certain task often arises. Consequently, the first and
most straightforward solution of early integration [7], which
consists in merging all the observations related to all the
streams into one large stream (frame by frame), and modeling
it using a single HMM, is less than satisfactory (Fig. 1b).
To resolve this problem, an adaptive multicue multicamera
information fusion framework based on democratic integration
[8] is presented in [9]. Fusion is performed by taking into



account sensor reliability, yet there is no direct sensor quality
assessment. Instead, the reliability of a source is estimated by
measuring the distance between each source estimate and the
fused estimate, which is determined by the sources estimates.
This is based on the assumption that the majority of sensors
are producing reliable estimates, which cannot always be taken
for granted.

A different probabilistic framework for multistream data
fusion is the multistream HMM approach [10], under which
each stream is modeled separately using its own HMM. Then,
analysis of the observed data can be conducted by creating
a special HMM, recombining all the single stream HMM
likelihoods at various specific temporal points. Obviously,
depending on the specific selection of these recombination
points, different solutions arise. For instance, in coupled
hidden Markov models (CHMMs) [5] (Fig. 1e), two component
HMMs are linked by the dependence of their hidden states.
However, in many applications where the component HMMs
do not consist of many states, such as in cases of audio-visual
data, this dependence assumption is not strong enough to cap-
ture the statistical correlations between the multiple streams. In
the state-synchronous multistream HMM (Fig. 1c) the streams
are assumed to be synchronized. Each stream is modelled
using an individual HMM; the postulated streamwise HMMs
share the same state dynamics. As a result, this approach
provides only limited sequential data modeling flexibility.

In [11], a parallel hidden Markov model (PaHMM) has
been proposed (Fig. 1d), which factorizes the state space
into multiple independent temporal processes without causal
connections in-between. Nevertheless, the assumption of the
different temporal processes being independent of each other
is clearly invalid in most cases, especially when dealing with
group or interactive activities.

Multistream fused HMMs (MFHMMs) is another promising
method for multistream data modeling [12] (Fig. 1f). Like
coupled HMMs and mixed-memory HMMs, an MFHMM
consists of multiple HMMs. However, unlike the previous
methods, the connections between the component HMMs are
chosen based on a probabilistic fusion model, which is optimal
according to the maximum entropy principle and a maxi-
mum mutual information criterion for selecting dimensionality
reduction transforms. As a consequence, the MFHMM has
several desirable features: a) It has simpler and faster training
and inference algorithms than the previous models; b) if one
of the component HMMs fails due to noise or a probable
malfunction of the sensor capturing the related observations
stream, the rest of the constituent HMMs can still work
properly; and c) it still retains the crucial information about the
interdependencies between the multiple data streams, which
coupled HMMs tend to neglect.

In this paper, motivated by the aforementioned advantages
of MFHMMs, we consider their application to the addressed
problem of visual behavioral analysis and monitoring from
multiple visual inputs in structured environments (workflow
recognition). In the existing literature, MFHMM is treated
under a maximum-likelihood (ML) framework, using the
expectation-maximization (EM) algorithm (see, e.g., [12]).
Even though maximum-likelihood is a common, and, in gen-

eral, reliable approach for estimation of probabilistic genera-
tive models, it suffers from the undesirable property of being
ill-posed since the likelihood function is unbounded from
above [13]–[15]. This fact might result in several very signif-
icant deficiencies, especially in cases of limited training data
availability; this is quite the case regarding the applications we
focus on in this paper, as training data from real installations
are difficult to collect, and very expensive to process and
annotate. As a result, using ML to train a set of generative
models for behavioral analysis and detection in such a context
might result in an unstable training procedure, yielding poor
model estimates, with high overfitting proneness; it could even
lead to yielding infinities in the likelihood function, associated
with the collapsing of the bell-shaped component distributions
onto individual data points, and, hence, resulting in singular
or near-singular covariance matrices [15].

To address these issues, in this work we introduce a
Bayesian treatment of MFHMMs, overcoming the problems
of ML approaches elegantly, by marginalizing over the model
parameters with respect to appropriate priors, and maximizing
the resulting marginal likelihood of the model to obtain the
optimal model size. Our approach is based on variational
approximation methods [16], which have recently emerged
as a deterministic alternative to Markov chain Monte-Carlo
(MCMC) algorithms for doing Bayesian inference for prob-
abilistic generative models [17], [18], with better scalability
in terms of computational cost [19]. Variational Bayesian
(VB) inference has been previously applied to a number
of probabilistic inference models, including relevance vector
machines [20], autoregressive models [21], [22], mixtures of
Gaussians and Student’s-t distributions [23], [24], mixtures
of factor analyzers [25], [26], and HMMs [27], [28], thereby
ameliorating the singularity and overfitting problems of ML
approaches in an elegant and computationally efficient manner.

Since variational Bayes provides a full posterior distribution
over the treated model parameters, the proposed approach
allows for the extraction of a reliable measure of confidence
in the obtained estimates of a trained MFHMM. This is yet
another significant advantage of the proposed VB treatment of
MFHMMs, as it allows for the easy and computationally effi-
cient introduction of the MFHMM in the context of an elegant
active learning framework. Indeed, as we shall discuss in the
following sections of this paper, under the proposed variational
Bayesian regard, well-known active learning criteria can be
easily implemented for MFHMMs, while previously they
were either computationally inefficient or intractable (when
considering point-estimated MFHMMs) [29], [30]. Therefore,
the introduction of the VB machinery does also allow for the
exploitation of effective active learning methodologies so as
to significantly reduce the training costs of MFHMMs, by
efficiently utilizing pools of cheap to acquire unlabeled data.

The remainder of this paper is organized as follows: In
Section II, the proposed variational Bayesian treatment of
MFHMMs is introduced, and the related model inference
and prediction algorithms are derived. In Section III, the
proposed approach is examined in the context of the active
learning framework. As we show, the proposed VB treatment
of MFHMMs allows for the efficient utilization of effective



Figure 1. Various fusion schemes using the HMM framework for two streams. The s, o stand for the states and the observations respectively. The first index
marks the stream and the second the time.

active learning algorithms, which would be either impossible
or computationally burdensome to apply when considering
point-estimated MFHMMs. In Section IV, we examine the
efficacy of the proposed approach considering two challenging
visual workflow recognition scenarios using publicly available
datasets. Finally, in the concluding section of this paper, we
summarize and discuss our results.

II. A VARIATIONAL BAYESIAN APPROACH TOWARDS
MFHMMS

A. Multistream Fused Hidden Markov Models

Consider M tightly interdependent time series (streams),
X = {Xm}Mm=1, with Xm = {xmt }Tt=1. Assume that the
constituent streams Xm, m ∈ {1, . . . ,M} of X , can be mod-
eled by M independent (streamwise) HMMs, with their corre-
sponding hidden state sequences denoted as Sm = {smt }Tt=1.
Then, we have

p(Xm) =
∑
Sm

p(Xm, Sm) (1)

where

p(Xm, Sm) = p(sm1 )p(xm1 |sm1 )

T∏
t=2

p(smt |smt−1)p(xmt |smt ) ∀m

(2)
and p(xmt |smt ) are the state-conditional likelihoods of the
models, usually selected to be mixtures of Gaussians, or
mixtures of Student’s-t densities [31]. In the following, we
shall be denoting as πm = (π

m
n )n the initial state probabilities

vector of the mth postulated streamwise HMM, with

πmn , p(sm1 = n)

and as Am = (amij )i,j the corresponding state transition
probabilities matrix, with

amij , p(smt = j|smt−1 = i) ∀t

The problem addressed by MFHMMs is how to construct
a new structure linking the postulated streamwise HMMs
together, that will be giving an optimal approximation of the
joint probability of the stream data, p(X) = p

(
{Xm}Mm=1

)



[12]. For this purpose, MFHMMs take advantage of the fact
that the streams {Xm}Mm=1 can be separately modeled by
individual HMMs. Then, to capture the statistical dependence
between these streams, a set of transforms wm , g(Xm)
is introduced, such that the joint probability p({wm}Mm=1)
can be more easily calculated compared to p({Xm}Mm=1).
On the basis of this regard, the MFHMM obtains an optimal
approximation of p(X) according to the maximum entropy
principle, given by [32]

p(X) ≈ p̃(X) (3)

where

p̃(X) = p̃
(
{Xm}Mm=1

)
,
p
(
{wm}Mm=1

)∏M
m=1 p(w

m)

M∏
m=1

p(Xm) (4)

Selection of a proper expression for the transforms wm is
conducted on the basis of the maximum mutual information
(MMI) criterion [33], a criterion which has been also used
for discriminative training of HMMs with quite a success
[34]. MMI criterion essentially comprises minimization of
the Kullback-Leibler divergence KL(p||p̃) between the exact
distribution p(X) and the approximate distribution p̃(X),
where

KL(p||p̃) = −
ˆ

dX1 . . .

ˆ
dXM

× p
(
{Xm}Mm=1

)
log

p̃
(
{Xm}Mm=1

)
p
(
{Xm}Mm=1

) (5)

It can be shown [12], that by application of the MMI criterion,
and considering that all the fused data streams of the MFHMM
are (a priori) of equal reliability, Eq. (4) yields

p̃(X) = p̃
(
{Xm}Mm=1

)
=

1

M

M∑
m=1

p(Xm)
∏
r 6=m

p(Xr|Ŝm)

(6)
In Eq. (6), Ŝm are the state sequence estimates of the available
stream data, obtained by application of the Viterbi algo-
rithm [15] on the individual streamwise HMMs comprising
the postulated MFHMM. Regarding the coupling densities
p(Xr|Ŝm), from the conditional independence property of the
Markovian chain, we yield

p(Xr|Ŝm) =

T∏
t=1

p(xrt |ŝmt ) (7)

The probabilities p(xrt |ŝmt ) of the MFHMM can be modeled
by means of mixtures of Gaussian or Student’s-t densities,
similar to the state-conditional likelihoods of the streamwise
HMMs. Note that for each possible value, say i, of ŝmt ,
a different coupling density model p(xrt |ŝmt = i) is to be
postulated. Hence, if we consider N -state streamwise HMMs,
there is a total of N different finite mixture models that must
be trained to model the coupling densities p(xrt |ŝmt ), ∀r,m.

B. Variational Bayesian Inference for the MFHMM

Bayesian treatments of probabilistic generative models com-
prise introduction of a set of prior distributions over the

model parameters and further maximization of the model’s
log marginal likelihood (log evidence). For convenience, usu-
ally conjugate priors are preferred, as this selection greatly
simplifies inference and interpretability [16]. However, due to
the complexity of the MFHMM, exact Bayesian inference for
our model is intractable. Nevertheless, the choice of conjugate
exponential prior distributions for the model parameters allows
for the derivation of an elegant variational framework.

Let us consider a model p(X|Ψ) treated under the vari-
ational Bayesian paradigm. Let p(Ψ) be the conjugate prior
imposed on the model, and X be the used set of training data.
Variational Bayesian inference is conducted by introducing an
approximate (variational) posterior over the model parameters
q(Ψ), and considering the well-known equality for the log
evidence, logp(X) [19]

logp(X) = F (q) + KL(q||p) (8)

where
F (q) =

ˆ
dΨq(Ψ)log

p(X,Ψ)

q(Ψ)
(9)

Since the KL divergence term in (8) is a non-negative quantity,
F (q) comprises a strict lower bound of the log evidence, i.e.

logp(X) ≥ F (q) (10)

and would become exact if q(Ψ) = p(Ψ|X). Hence, max-
imizing the lower bound of the log evidence (variational
free energy), F (q), so that it becomes as tight as possible,
i.e. minimizing the KL divergence between the true and the
variational posterior, a good variational inference scheme is
obtained. In other words, variational Bayes can be summarized
under the maximization scheme

q(Ψ) = argmaxqF (q) (11)

It is worthwhile to note that the variational posteriors
obtained by optimization of the variational free energy F (q)
are only an approximation of the actual posterior densities
p(Ψ|X). However, the variational Bayesian approach allows
for considerably better scalability in terms of computational
cost [19] compared to exact Bayesian inference using Markov
chain Monte-Carlo (MCMC) algorithms, which becomes of
practical importance in applications requiring fast processing
of high-dimensional large-scale datasets.

As the MFHMM consists of two fundamental “building
blocks,” the streamwise HMMs, and the coupling models, vari-
ational Bayesian inference for this model can be degenerated
into two separate procedures: (a) variational Bayes for the
postulated (streamwise) HMMs; and (b) variational Bayes for
the postulated finite mixture models (coupling models). Below,
we provide an outline of the proposed variational Bayesian
treatment of the MFHMM.

C. Variational Posteriors
Consider an MFHMM modeling M tightly interdependent

time series, {Xm}Mm=1. For simplicity, and without any loss
of generality, we assume that all the observed time series have
the same length, T , i.e. Xm = {xmt }Tt=1. The variational
posteriors of the postulated MFHMM can be derived as
follows.



1) Streamwise HMM training: Initially, M individual
HMMs are trained independently (one for each stream), by
means of the VB algorithm, as described, e.g., in [27]. These
are the constituent streamwise HMMs of our model, with
obtained variational posteriors q(Ψm), where Ψm are the
parameters of the mth constituent streamwise HMM, m =
1, . . . ,M . For simplicity, and without any loss of generality,
we consider N -state streamwise HMMs.

Specifically, VB inference for the streamwise HMMs of
our model is conducted by imposing Dirichlet priors over the
initial state and state transition probabilities of the models:

p(πm) = D(πm1 , . . . π
m
N |φm1 , . . . , φmN ) (12)

p(Am) =

N∏
i=1

D(ami1, . . . , a
m
iN |υmi1 , . . . , υmiN ) (13)

The observation emission probabilities of the hidden states
of the models are taken as finite mixtures of Gaussian
or Student’s-t distributions. Considering for simplicity K-
component mixture models, we impose a Dirichlet prior over
their mixture component weights, of the form:

p(∆m) =

N∏
i=1

D(δmi1 , . . . , δ
m
iK |εmi1, . . . , εmiK) (14)

and a joint Normal-Wishart prior over the means and precision
matrices of the (Gaussian or Student’s-t) mixture component
densities:

p({µmij ,R
m
ij}

N,K
i,j=1) =

N∏
i=1

K∏
j=1

NW(µmij ,R
m
ij |λmij ,γmij , ηmij ,Q

m
ij )

(15)
As a result of choosing to impose conjugate priors over the

parameters of our model, the resulting variational posteriors
of the model parameters take the same functional form as
their corresponding priors [19]. Complete derivations of these
posteriors have been provided in one of our previous works
[27], and hence we refrain from repeating them here for
brevity.

2) Sequence decoding: The best hidden state sequences
Ŝm of the streamwise HMMs, corresponding to the used
training data Xm, are found using the VB Viterbi algo-
rithm [27]. The VB Viterbi algorithm comprises maximiza-
tion of the approximate (variational) posterior expectation of
logp(Xm, Sm|Ψm):

Ŝm = argmaxSm

ˆ
dΨmq(Ψm)logp(Xm, Sm|Ψm) (16)

where logp(Xm, Sm|Ψm) is defined in (2) (for details, refer
to [27]).

3) Coupling models training: Finally, the coupling models
are obtained. This problem is equivalent to postulating one
finite mixture model (with Gaussian or Student’s-t densi-
ties) for each of the distributions p(xrt |ŝmt = i), ∀i ∈
{1, . . . , N}, r,m ∈ {1, . . . ,M}, r 6= m, and subsequently
employing variational Bayes to obtain the variational poste-
riors q(Ψr,m

i ) over their parameters sets Ψr,m
i . The complete

derivations of the VB training algorithm for finite mixtures of
Gaussian densities can be found in [16], while for the case of
Student’s-t densities they are provided in [24].

D. Hidden State Sequence Estimation Algorithm
Essentially, this is the problem of maximizing

{Ŝm}Mm=1 =argmax{Sm}Mm=1

ˆ
dΨq(Ψ)

× logp({Xm, Sm}Mm=1|Ψ)

(17)

where Ψ , {{Ψr,m
i }Ni=1,Ψ

m}Mm,r=1,m6=r. Then, following the
related results of [12], and assuming that all the postulated
streamwise HMMs are of the same reliability, using (3) and
(6) we have that (17) eventually reads

Ŝm = argmaxSm

ˆ
dΨmq(Ψm)

× log

p(Xm, Sm|Ψm)
∏
r 6=m

p(Xr|Sm; Ψr,m
Sm

)

 (18)

Comparing the result (18) with (16), we directly observe that
estimation of the optimal state sequences Ŝm for the MFHMM
effectively boils down to merely an application of the VB
Viterbi algorithm, with the probabilities

p(Xm|Sm) =

T∏
t=1

p(xmt |smt ) ∀m (19)

of the single-HMM Viterbi algorithm being now replaced with
the products∏

∀r

p(Xr|Sm) =
∏
∀r

T∏
t=1

p(xrt |smt ) ∀m (20)

in which expression the quantities p(Xm|Sm) are given by the
postulated streamwise HMMs, and the quantities p(Xr|Sm),
r 6= m, are given by the coupling models.

E. Predictive Probability
The ultimate goal of Bayesian learning is, given a set of

test data, to perform density estimation with respect to the
learned model. Let us suppose the test data Y = {Y m}Mm=1,
with Y m = {ymt }Tt=1, and an MFHMM trained using the
training data X , with obtained variational posterior q(Ψ). The
variational (approximate) predictive density of the given test
data with respect to the considered MFHMM is given by

p(Y |X) =

ˆ
dΨq(Ψ)p(Y |Ψ) (21)

yielding

p(Y |X) = p
(
{Y m}Mm=1|X

)
≈ 1

M

M∑
m=1

q(Y m)
∏
r 6=m

q(Y r|Ŝm)

(22)
where

q(Y r|Ŝm) =

T∏
t=1

q(yrt |ŝt
m) (23)

while q(Y m) and q(yrt |ŝ
m
t ) are the predictive densities of

the streamwise HMMs and the coupling models, respectively,
comprising the trained MFHMM, which can be obtained
based on the VB treatments of these models (see, e.g., the
descriptions in [27] regarding the streamwise HMMs, and the
discussions in [16] regarding the coupling models).



III. HOW DOES VB FACILITATE MFHMM-BASED ACTIVE
LEARNING?

As we have already discussed, due to the prohibitively
high costs of capturing and annotating behavioral data from
real installations, measures have to be taken to avoid se-
vere MFHMM training algorithm instabilities (e.g., yielding
singular covariance estimates). Variational Bayes serves us
well towards the achievement of this goal. However, another
significant repercussion of the shortage in training data regards
the high chances of the trained model manifesting a notably
poor generalization performance [35].

To remedy this issue, we employ in this work the concept
of active learning. Active learning is based on the notion that
the performance of the learners (here, MFHMMs) might be
considerably improved if the learners could actively participate
in the learning process [36]. That is, contrary to conventional
supervised learning, where the learner “passively” receives
the labeled data and generates a learned model, we would
like to introduce a framework for identifying a subset of a
pool of unlabeled examples that would be most informative
if the associated labels were available and incorporate them
in the learning procedure. Hence, the proposed active learning
methodology comprises two basic procedures: first, selection
of the most informative samples from a pool of unlabeled data;
and, second, labeling of these samples and introduction into
the model training procedure of the MFHMM.

Under the proposed Bayesian treatment of the MFHMM,
the informativeness of a new data point can be assessed
analytically by viewing unlabeled sample selection as an
information extraction process: we select the data that gives
us maximum information about the pool of unlabeled samples;
in other words, we apply an information gain criterion. Since
variational Bayes yields a posterior over the model parameters
Ψ, information gain after augmenting an unlabeled data into
the training set can be expressed in the context of information
theory: “How much information about Ψ can be obtained if
we add an unlabeled data X∗ into the training set?”

Indeed, let us consider C modeled behavioral classes, each
one represented by a postulated MFHMM. Following [37], we
measure the information gain obtained by adding an unlabeled
data X∗ into the training set by means of the KL divergence
between the posterior density of the MFHMM parameters Ψ
obtained after augmenting the unlabeled data X∗ into the
training set and before the augmentation [37], defined as

G(X∗) ,
C∑

c∗=1

KL

(
p(Ψc∗ |X∗, X)||p(Ψc∗ |X)

)
p(c∗|X∗;X)

(24)
In (24), p(Ψc∗ |X∗, X) is the variational posterior of the c∗th
postulated MFHMM (modeling the c∗th behavioral class),
obtained after augmenting the unlabeled data X∗ into the
training data of the class; p(Ψc∗ |X) is the variational posterior
of the c∗th postulated MFHMM obtained before augmenting
any unlabeled data; and, finally, p(c∗|X∗;X) is the a pos-
teriori probability of the c∗th class regarding the unlabeled
sample X∗, which, considering all the classes of equal a priori

probability, is given by

p(c∗|X∗;X) =
pc∗(X∗|X)∑C
k=1 pk(X∗|X)

(25)

where pk(X∗|X) is the (variational) predictive probability of
the data X∗ with respect to the kth class MFHMM, defined
in (22).

In essence, G(X∗) seeks labels that can most shrink or
expand (i.e., change) the model variance; thus, the information
gain obtained by this measure is defined in terms of the
possible change in the model variance, which has been shown
to be more appropriate than other related information gain
metrics [38], as well as other candidate unlabeled data selec-
tion strategies, e.g., the query by committee (QBC) approach
[39], for comparably low computational costs. Finally, in
regards to the labeling decision for the unlabeled samples
selected to be incorporated in the model training procedure,
this can be simply effected by maximization of the a posteriori
probabilities (25) of the selected data points over the class
labels c∗.

In our experimental investigations, apart from the infor-
mation gain criterion (24), we shall also consider the QBC
approach as another alternative for the conduction of active
learning in the context of the variational Bayesian MFHMM.
In the framework of QBC [39], [40], the informativeness of an
example is measured by computing the classification variance
with respect to the entire space of possible models consistent
with the training data thus far. Since this computation is
practically infeasible, the QBC algorithm approximates the
entire space by randomly sampling the posterior distribution
of the model parameters obtained from model training. These
randomly selected models serve as a “committee” of classifiers
to classify each unlabeled example. Then, the classification
variance is measured by computing the disagreement over
the classifications obtained by the classifiers comprising the
committee. The data samples with the strongest disagreement
among the committee are selected for labeling.

In this work, this degree of disagreement shall be measured
via the KL divergence, measuring the average distance of the
class posterior density resulting from each committee member
to their mean value. Specifically, let us denote as {Ψ̂c

ξ}Ξξ=1 a
set of Ξ instances of the trained MFHMM model of the cth
class, with variational posterior q(Ψc), obtained by sampling
q(Ψc) Ξ consecutive times. Then, the score of an unlabeled
data X∗ given by the sampled committee of experts is given
by

score(X∗) =
1

Ξ

Ξ∑
ξ=1

KL
[
p
(
c∗|X∗, Ψ̂c∗

ξ

) ∣∣∣∣pavg (c∗|X∗)
]

(26)
where

pavg (c∗|X∗) =
1

Ξ

Ξ∑
ξ=1

p
(
c∗|X∗, Ψ̂c∗

ξ

)
(27)

and, considering all the classes of equal a priori probability,
we have

p
(
c|X∗, Ψ̂c

ξ

)
=

pc(X
∗|Ψ̂c

ξ)∑C
k=1 pk(X∗|Ψ̂k

ξ )
(28)



Figure 2. Different camera views in the CMU Multi-Modal Activity Database
(from [41]). We used the cameras 7151020 (first in second row) and 7151062
(second in first row).

where pc(X∗|Ψ̂c
ξ) is the predictive probability of the MFHMM

of the cth class with respect to X∗, and c∗ in (26) and (27) is
the class the maximizes (28) for the given committee member
ξ and predictive point X∗.

IV. EXPERIMENTAL RESULTS

To experimentally verify the proposed approach, we have
used some public benchmark datasets involving action recog-
nition of humans, namely the CMU-MMAC and workflow
recognition (WR) databases.

A. Meal preparation

The first set of experiments was based on a part of the CMU-
MMAC database [41]. The CMU-MMAC database contains
multimodal measures of human activity of subjects performing
tasks involved in cooking and food preparation. Six synchro-
nised cameras have been used to capture scenarios such as
preparation of salad, pizza, eggs, and sandwich. Many types
of tasks have been annotated within these scenarios. In our
experiments, we considered the brownie preparation scenario.
We have used twelve videos containing the full scenario, and
sought to recognize 29 tasks described in Table I; the ground-
truth annotations were taken from the dataset providers. Views
from two cameras (7151020 and 7151062) were employed for
that purpose (see Fig. 2).

To extract the spatiotemporal variations, we used pixel
change history images to capture the motion history (see,
e.g., [42]), and computed the complex Zernike moments
A00, A11, A20, A22, A31, A33, A40, A42, A44, A51, A53, A55, A60,
A62, A64, A66, for each of which we computed the norm and
the angle. Additionally the center of gravity and the area
of the found blobs were also used, making a total of 31
parameters, thus providing an acceptable scene reconstruction
without a computationally prohibitive dimension. Zernike
moments were calculated in rectangular regions of interest
of approximately 15000 pixels in each image to limit the
processing and allow real time feature extraction (performed
at a rate of approximately 50-60 fps).

The employed HMMs comprised three states, each one hav-
ing a single mixture component distribution, which facilitated
fast algorithm execution with acceptable results. The streams
were coupled using a Gaussian mixture of two components.

We randomly selected two full workflows for initial training
(each containing 62 samples of all possible tasks), we used 2
different workflows to draw samples from (68 task samples in

Table I
MEAL PREPARATION TASKS FROM THE CMU-MMAC DATABASE,

INCLUDING THEIR CODE AND THE TOTAL AMOUNT OF SAMPLES IN THE
TWELVE BROWNIE PREPARATION SCENARIOS.

task code Task total samples
03 close fridge 11
06 open brownie bag 9
07 open brownie box 12
12 open fridge 11
14 pour brownie bag into big bowl 12
15 pour oil into big bowl 12
16 pour oil into measuring cup small 12
17 pour water into big bowl 12
18 pour water into measuring cup big 11
19 put baking pan into oven 12
24 put pam into cupboard bottom right 9
22 put oil into cupboard bottom right 10
27 spray pam 10
28 stir big bowl 12
30 switch on 12
31 take baking pan 12
32 take big bowl 12
33 take brownie box 12
34 take egg 11
35 take fork 12
37 take measuring cup big 12
38 take measuring cup small 12
39 take oil 10
40 take pam 9
42 twist off cap 11
43 twist on cap 12
44 walk to counter 11
45 walk to fridge 11
50 crack egg on big bowl 9

total) for the purposes of the active learning algorithm, and
used the rest eight available workflows for testing (258 task
samples in total). A graphical representation of the obtained
success rates as new samples were included is given in Fig.
3.

B. Industrial part assembly

We used the WR dataset, and specifically the first two
workflows pertaining to car assembly (see [43] for more
details). The tasks to recognize in each of the workflows are
the following:

1) Worker 1 picks up part 1 from rack 1 (upper) and places
it on the welding cell; mean duration is 8-10 sec.

2) Worker 1 and worker 2 pick part 2a from rack 2 and
place it on the welding cell.

3) Worker 1 and worker 2 pick part 2b from rack 3 and
place it on the welding cell.

4) Worker 2 picks up spare parts 3a, 3b from rack 4 and
places them on the welding cell.

5) Worker 2 picks up spare part 4 from rack 1 and places
it on the welding cell.

6) Worker 1 and worker 2 pick up part 5 from rack 5 and
place it on the welding cell.

Each of the above tasks is a class that has to be recognized.
The partial or total occlusions due to the racks make the
task very difficult to complete with a single camera and
therefore two views have been used (see Fig. 4), hence the
need for a methodology allowing for the successful fusion of
the information contained in tightly coupled times series.



(a) Accuracy of camera 7151020 steamwise
model.

(b) Accuracy of camera 7151062 steamwise
model.

(c) Accuracy fusing both cameras.

Figure 3. Success rates for the active learning methods compared to the
random case, using a subset of the kitchen MMAC dataset. The x-axis is the
number of selected samples for training, the y-axis is the respective accuracy
on the test set.

Figure 4. Schematic and camera views in the car assembly environment.

In our experiments, we have used two different workflows,
each one comprising 20 sequences representing full assembly
cycles and containing at least one of the considered behaviors.
The total number of frames in each case was approximately
80000. Annotation of these frames has been performed manu-
ally. The second workflow is considered more difficult because
the tasks may be executed in parallel, whereas in the first
workflow the tasks were always executed sequentially. The

same type of features were used as in the previous subsection.
HMM configuration was similar to the previous experiment.

We randomly selected three full workflows for initial train-
ing (each containing all possible tasks), we used seven work-
flows to draw samples from (42 task samples in total) for the
purposes of the active learning algorithm, and left the rest ten
workflows for testing (60 task samples in total). The results
for the first and second workflows are given in Fig. 5 and 6,
respectively.

(a) Accuracy of camera 1 steamwise model.

(b) Accuracy of camera 2 steamwise model.

(c) Accuracy fusing both cameras.

Figure 5. Success rates for the active learning methods compared to the
random case, using the first workflow of the WR-dataset. The x-axis is the
number of selected samples for training, the y-axis is the respective accuracy
on the test set.

C. Comparison to baseline classification methods

To verify the merit of the variational Bayesian approach
towards observation fusion methods, we have included ex-
perimental comparisons of the variational Bayesian approach
against the standard HMM and MFHMM models obtained
using EM-based training. In our experiments, for both the first
and second workflows of the WR dataset, the first ten scenarios
were used for training and the rest scenarios for testing, while,
in the case of the CMU-MMAC dataset, we trained with the
first five scenarios and used the rest for testing. In all cases,



(a) Accuracy of camera 1 steamwise model.

(b) Accuracy of camera 2 steamwise model.

(c) Accuracy fusing both cameras.

Figure 6. Success rates for the active learning methods compared to the
random case, using the second workflow of the WR-dataset. The x-axis is the
number of selected samples for training, the y-axis is the respective accuracy
on the test set.

three HMM states with a single component observation model
were used for both the VB and EM methods. The results are
displayed in Table II for models with Gaussian observation
densities, and in Table III for models with Student’s-t ob-
servation densities. As we observe, VB gives results which
in most cases are much better than the EM algorithm for
both the streamwise as well as the fused models. The higher
accuracy comes, of course, at a higher computational cost.
In all our experiments, classification using the VB models
required between 4 and 5 times more time compared to the EM
approach. Nevertheless, although higher, the computational
time needed still remains of the same order of magnitude.

Furthermore, we have also compared to MCMC-based
methods; for this purpose, we have considered the HMM
model proposed in [44]. In our experiments, we used a
truncation level of 10 states for this model, and imposed priors
similar to our VB-based inference algorithm. Theoretically,
higher accuracy is expected as the number of sampling it-
erations increases. Indeed, we observed this behavior in our
experiments; nevertheless, to achieve similar or higher per-

formance compared to the corresponding VB-based models,
a very large number of iterations was needed, requiring too
many computational resources, although the dimensionality
of the problem was not too large. In Table II, we provide
the results of the MCMC-based method of [44] for 10000
sampling iterations, which is a number of sampling iterations
incurring reasonable computational costs (12 hours on an Intel
Xeon 2.53GHz PC).

Finally, regarding the comparative computational costs
of sequence classification using the proposed VB-based
MFHMM model and simple streamwise models, we would
like to mention that the costs of the proposed model are
roughly equal to the sum of the costs of the corresponding
streamwise models. Hence, in cases where two streams are
used, our approach roughly imposes double the costs of a sin-
gle streamwise model. This result was theoretically expected,
considering that prediction in our model is conducted using
Eq. (22).

D. Discussion

In our experimental investigations, we evaluated the perfor-
mance of the proposed information fusion scheme. Clearly,
our fusion approach yielded improved results over methods
using single-stream information. We also observed that the
VB methods outperformed the respective EM-based ones for
both the streamwise as well as the fused models. This result
was theoretically expected since the latter models make point-
estimates, which are more vulnerable to overfitting [27].

We also investigated the effectiveness of the proposed
framework in an active learning setting. Two different active
learning criteria were examined, namely information gain and
query by committee. Using these methods, we were able to
select the most appropriate samples to incorporate in model
training. This process of sample selection was repeated until
the maximum number of new samples was reached.

It has to be mentioned that QBC entails sampling of the
model parameters, which may require a large number of
experts. In our setting we used 30 experts, by drawing the same
number of samples; increasing the number of experts would
give more representative results, however the computational
burden would increase proportionally. In our setting, the
required execution time was almost the same for both methods
for the selected amount of experts used from the QBC method.

Clearly, active learning outperformed random sample se-
lection. To achieve the same performance, active learning
methods require much less data than random selection. The
differences in accuracy are bigger when adding only few
samples. We have observed that both the gain and QBC criteria
are able to select the samples that are closer to optimal in the
sense of acquired information. As expected, we also observed
that as more samples are labelled and added to the training set,
the gap in performance compared to random selection tends
to reduce. Furthermore, we noted that in most cases none
of the proposed active learning methods could significantly
outperform the other.



Table II
COMPARISON TO STANDARD EM APPROACHES USING THE GAUSSIAN OBSERVATION MODEL. COLUMNS EM-HMM1 AND EM-HMM2 PROVIDE THE
ACCURACY OF THE EM-TRAINED STREAMWISE HMMS, AND EM-MFHMM PROVIDES THE ACCURACY OF THE EM-TRAINED MULTISTREAM FUSED

HMM. THE CORRESPONDING RESULTS FOR MODELS TRAINED USING THE VARIATIONAL BAYESIAN APPROACH ARE PROVIDED IN COLUMNS
VB-HMM1, VB-HMM2, AND VB-MFHMM, RESPECTIVELY. ACCURACY FOR MCMC-TRAINED STREAMWISE MODELS ARE PROVIDED IN MCMC-1

AND MCMC-2.

Dataset EM-HMM1 EM-HMM2 MFHMM VB-HMM1 VB-HMM2 VB-MFHMM MCMC-1 MCMC-2
CMU-MMAC 39.49 35.90 41.03 43.08 37.95 44.62 42.13 29.23

WR 1 90.00 70.00 90.00 95.00 86.67 96.67 78.00 71.00
WR 2 55.71 37.14 63.33 63.33 56.67 68.33 35.00 45.00

Table III
COMPARISON TO STANDARD EM APPROACHES USING THE STUDENT’S-T OBSERVATION MODEL: COLUMNS EM-HMM1 AND EM-HMM2 PROVIDE THE

ACCURACY OF THE EM-TRAINED STREAMWISE HMMS, AND EM-MFHMM PROVIDES THE ACCURACY OF THE EM-TRAINED MULTISTREAM FUSED
HMM. THE CORRESPONDING RESULTS FOR MODELS TRAINED USING THE VARIATIONAL BAYESIAN APPROACH ARE PROVIDED IN COLUMNS

VB-HMM1, VB-HMM2, AND VB-MFHMM, RESPECTIVELY.

Dataset EM-HMM1 EM-HMM2 MFHMM VB-HMM1 VB-HMM2 VB-MFHMM
CMU-MMAC 41.03 33.85 43.07 43.59 42.56 45.64

WR 1 90.00 72.86 91.42 93.33 91.67 98.33
WR 2 60.00 38.33 65.71 61.67 56.67 68.33

V. CONCLUSIONS

In this work, we presented a novel variational Bayesian
treatment of multistream fused hidden Markov models, with
application to visual workflow recognition using multicamera
networks. MFHMMs have been very successful in fusion of
information from tightly interdependent data streams, with
low computational requirements. In this work, we employed
an elegant variational Bayesian treatment, which does not
need large amounts of training data to guarantee dependable
model estimation, since variational Bayes is much less prone
to overfitting. Hence, despite the fact that the annotation of
training data can be a major bottleneck, our VB-based method
does not require large amount of them.

A major advantage of the proposed variational Bayesian
treatment of MFHMMs over conventional approaches con-
sists in the provision of a measure of confidence in the
obtained model estimates. As we have shown, utilization
of this information allows for the computationally efficient
integration of the MFHMM into an active learning framework,
by application of popular active learning criteria that would be
either computationally cumbersome or even intractable were
it not for the proposed variational Bayesian treatment.

REFERENCES

[1] G. L. Foresti, C. Micheloni, L. Snidaro, P. Remagnino, and T. Ellis,
“Active video-based surveillance systems,” IEEE Signal Proc. Magazine,
vol. 22, no. 2, pp. 25–37, 2005.

[2] G. L. Foresti, C. S. Regazzoni, and P. K. Varshney, Multisensor
Surveillance Systems: The Fusion Perspective. Norwell, MA: Kluwer,
2003.

[3] N. Oliver, B. Rosario, and A. Pentland, “A Bayesian computer vision
system for modeling human interactions,” IEEE Trans. Pattern Analysis
and Machine Intelligence, vol. 22, no. 8, pp. 831–843, 2000.

[4] S. Dupont and J. Luettin, “Audio-visual speech modeling for continuous
speech recognition,” IEEE Trans. Multimedia, vol. 2, pp. 141–151, 2000.

[5] M. Brand, N. Oliver, and A. Pentland, “Coupled hidden Markov models
for complex action recognition,” Proc. IEEE, 1997.

[6] N. Oliver, E. Horvitz, and A. Garg, “Layered representations for learning
and inferring office activity from multiple sensory channels,” in Proc.
Int’l Conf. Multimodal Interfaces, 2002.

[7] D. G. Stork and M. E. Hennecke, “Speech reading by humans and
machines,” in NATO ASI Series F. Springer Verlag, 1996, vol. 150.

[8] J. Triesch and C. von der Malsburg, “Democratic integration: Self-
organized integration of adaptive cues,” Neural Comput., vol. 13, no. 9,
pp. 2049–2074, 2001.

[9] O. Kahler, J. Denzler, and J. Triesch, “Hierarchical sensor data fusion by
probabilistic cue integration for robust 3D object tracking,” in Proc. 6th
IEEE Southwest Symp. Image Anal. and Interpret., 2004, pp. 216–220.

[10] A. Morris, A. Hagen, H. Glotin, and H. Bourlard, “Multi-stream adaptive
evidence combination for noise robust ASR,” Speech Comm., 2001.

[11] C. Vogler and D. Metaxas, “A framework for recognizing the simulta-
neous aspects of American sign language,” Computer Vision and Image
Understanding, vol. 81, no. 358-384, 2001.

[12] Z. Zeng, J. Tu, B. M. P. Jr., and T. S. Huang, “Audio–visual affective
expression recognition through multistream fused HMM,” IEEE Trans.
Multimedia, vol. 10, no. 4, pp. 570–577, 2008.

[13] K. Yamazaki and S. Watanabe, “Singularities in mixture models and
upper bounds of stochastic complexity,” Neural Networks, vol. 16, no. 7,
pp. 1029–1038, 2003.

[14] C. Archambeau, J. Lee, and M. Verleysen, “On the convergence prob-
lems of the EM algorithm for finite Gaussian mixtures,” in Eleventh
European symposium on artificial neural networks, 2003, pp. 99–106.

[15] G. McLachlan and D. Peel, Finite Mixture Models. New York: Wiley
Series in Probability and Statistics, 2000.

[16] C. M. Bishop, Pattern Recognition and Machine Learning. New York:
Springer, 2006.

[17] J. Diebolt and C. Robert, “Estimation of finite mixture distributions
through Bayesian sampling,” J. Roy. Statist. Soc. B, vol. 56, pp. 363–
375, 1994.

[18] S. Richardson and P. Green, “On Bayesian analysis of mixtures with
unknown number of components,” J. Roy. Statist. Soc. B, vol. 59, pp.
731–792, 1997.

[19] M. Jordan, Z. Ghahramani, T. Jaakkola, and L. Saul, “An introduction
to variational methods for graphical models,” in Learning in Graphical
Models, M. Jordan, Ed. Dordrecht: Kluwer, 1998, pp. 105–162.

[20] C. Bishop and M. Tipping, “Variational relevance vector machines,” in
Proc. 16th Conf. Uncertainty in Artificial Intelligence, 2000, pp. 46–53.

[21] S. Roberts and W. Penny, “Variational Bayes for generalized autoregres-
sive models,” IEEE Trans. Signal Processing, vol. 50, pp. 2245–2257,
2002.

[22] V. Smidl and A. Quinn, “Mixture-based extension of the AR model and
its recursive Bayesian identification,” IEEE Trans. Signal Processing,
vol. 53, pp. 3530–3542, 2005.

[23] C. Archambeau and M. Verleysen, “Robust Bayesian clustering,” Neural
Networks, vol. 20, pp. 129–138, 2007.

[24] M. Svensén and C. M. Bishop, “Robust Bayesian mixture modelling,”
Neurocomputing, vol. 64, pp. 235–252, 2005.

[25] Z. Ghahramani and M. Beal, “Variational inference for Bayesian mixture
of factor analysers,” Advances Neural Information Processing Systems,
vol. 12, 1999.



[26] S. Chatzis, D. Kosmopoulos, and T. Varvarigou, “Signal modeling and
classification using a robust latent space model based on t distributions,”
IEEE Trans. Signal Processing, vol. 56, no. 3, March 2008.

[27] S. Chatzis and D. Kosmopoulos, “A variational Bayesian methodol-
ogy for hidden Markov models utilizing Student’s-t mixtures,” Pattern
Recognition, vol. 44, no. 2, pp. 295–306, 2011.

[28] I. Rezek and S. J. Roberts, “Ensemble hidden Markov models with
extended observation densities for biosignal analysis,” in Probabilistic
Modeling in Biomedicine and Medical Bioinformatics, E. D. Husmeier,
R. Dybowski, and S. Roberts, Eds. Springer Verlag, 2005.

[29] D. MacKay, “Information-based objective functions for active data
selection,” Neural Computation, vol. 4, pp. 589–603, 1992.

[30] D. Cohn, Z. Ghahramani, and M. Jordan, “Active learning with statistical
models,” J. Artificial Intelligence Research, vol. 4, pp. 129–145, 1996.

[31] S. Chatzis, D. Kosmopoulos, and T. Varvarigou, “Robust sequential data
modeling using an outlier tolerant hidden Markov model,” IEEE Trans.
Pattern Analysis and Machine Intelligence, vol. 31, no. 9, pp. 1657–
1669, 2009.

[32] S. P. Luttrell, “The use of Bayesian and entropic methods in neural
network theory,” in Maximum Entropy and Bayesian Methods. Boston,
MA: Kluwer, 1989, pp. 363–370.

[33] H. Pan, Z.-P. Liang, and T. S. Huang, “Estimation of the joint probability
of multisensory signals,” Pattern Recogn. Lett., vol. 22, pp. 1431–1437,
2001.

[34] D. Povey and P. Woodland, “Minimum phone error and i-smoothing for
improved discrimative training,” in Proc. ICASSP, 2002.

[35] S. Raudys and A. Jain, “Small sample size effects in statistical pattern
recognition: Recommendations for practitioners,” IEEE Trans. Pattern
Anal. Mach. Intell., vol. 13, no. 3, pp. 252–264, 1991.

[36] M. A. Osborne, R. Garnett, and S. J. Roberts, “Active data selection
for sensor networks with faults and changepoints,” in Proc. IEEE 24th
International Conference on Advanced Information Networking and
Applications (AINA 2010), 2010, pp. 533–540.

[37] S. Ji, B. Krishnapuram, and L. Carin, “Variational Bayes for continuous
hidden Markov models and its application to active learning,” IEEE
Trans. Pattern Analysis and Machine Intelligence, vol. 28, no. 4, pp.
522–532, 2006.

[38] D. MacKay, “Information-based objective functions for active data
selection,” Neural Computation, vol. 4, pp. 589–603, 1992.

[39] Y. Freund, H. Seung, E. Shamir, and N. Tishby, “Selective sampling
using the query by committee algorithm,” Machine Learning, vol. 28,
pp. 133–168, 1997.

[40] H. Seung, M. Opper, and H. Smopolinsky, “Query by committee,” in
Proc. Fifth Ann. ACM Workshop Computational Learning Theory, 1992,
pp. 287–294.

[41] F. D. la Torre, J. Hodgins, J. Montano, S. Valcarcel, R. Forcada,
and J. Macey., “Guide to the Carnegie Mellon University multimodal
activity (CMU-MMAC) database,” Carnegie Mellon University, Tech.
Rep. CMU-RI-TR-08-22, July 2009.

[42] D. Kosmopoulos and S. Chatzis, “Robust visual behavior recognition,”
Signal Processing Magazine, IEEE, vol. 27, no. 5, pp. 34 –45, sept.
2010.

[43] A. Voulodimos, D. Kosmopoulos, G. Vasileiou, E. Sardis, A. Doulamis,
V. Anagnostopoulos, C. Lalos, and T. Varvarigou, “A dataset for work-
flow recognition in industrial scenes,” in IEEE Int. Conference on Image
Processing, 2011, pp. 3310–3313.

[44] E. B. Fox, E. B. Sudderth, M. I. Jordan, and A. S. Willsky, “An
HDP-HMM for systems with state persistence,” in Proc. International
Conference on Machine Learning, July 2008.


