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Abstract. Hidden Markov models (HMMs) are a popular approach for modeling
sequential data, typically based on the assumption of a first-order Markov chain.
In other words, only one-step back dependencies are modeled which is a rather
unrealistic assumption in most applications. In this paper, we propose a method
for postulating HMMs with approximately infinitely-long time-dependencies. Our
approach considers the whole history of model states in the postulated dependen-
cies, by making use of a recently proposed nonparametric Bayesian method for
modeling label sequences with infinitely-long time dependencies, namely the se-
quence memoizer. We manage to derive training and inference algorithms for our
model with computational costs identical to simple first-order HMMs, despite its
entailed infinitely-long time-dependencies, by employing a mean-field-like ap-
proximation. The efficacy of our proposed model is experimentally demonstrated.

1 Introduction

The hidden Markov model (HMM) is increasingly being adopted in applications since it
provides a convenient way of modeling observations appearing in a sequential manner
and tending to cluster or to alternate between different possible components (subpop-
ulations) [1]. HMMs typically used in sequential data modeling applications postulate
first-order Markov chains; i.e., they are based on the assumption that the distribution of
a state transition depends only on the current state. Even though this assumption allows
for a good trade-off between data modeling effectiveness and computational complex-
ity of the resulting model training and inference algorithms, it is quite clear that the
first-order state transition dependencies provide a rather poor model of the actual data
dynamics in several real-world applications.

To overcome the shortcomings of first-order HMMs, several refinements have been
proposed, introducing HMMs with higher-order dependencies, see, e.g., [2], [3], [4].
A major drawback of the existing approaches is their considerably increased computa-
tional costs, which become rather prohibitive as model order increases, especially when
it exceeds ten. An effort to ameliorate these issues of higher-order HMMs is presented
in [5]. In that work, instead of directly training R-th order HMMs on the data, a method
of fast incremental training is used that progressively trains HMMs from first to R-th
order. Although this approach is much faster, it is still faced with rapidly increasing
computational costs with the model order R.
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In this paper we attempt to obtain a non-stationary HMM approximately taking into
account the whole history of state transitions. In other words, we derive an R-th order
HMM on the limit R → ∞, where the state transition probabilities of the Markov chain
vary over time. Formulation of our model is based on introduction of a new type of
state transition probabilities for HMMs which are obtained as the predictive densities
of a sequence memoizer (SM) [6], a nonparametric Bayesian method recently proposed
for modeling sequential data with discrete values and dependencies over infinitely-long
time-windows. As we show, training and inference for our model can be efficiently
reduced to the forward-backward and Viterbi algorithms, respectively, used in the case
of first-order HMMs, by utilizing an approximation technique, based on the mean-field
principle from statistical mechanics [7,8].

The remainder of this paper is organized as follows: In Section 2, we provide the the-
oretical background of our approach. In Section 3, the proposed nonstationary infinite-
order HMM (HMM∞) model is introduced, and its training and inference algorithms
are derived. In Section 4, we consider a number of applications of the HMM∞ model,
with the aim to investigate whether coming up with a computationally tractable way
of approximately introducing an infinite-order HMM is of any significance for the se-
quential data classification algorithm when considering real-life datasets. Finally, in the
concluding section, we summarize our work and discuss our future research directives.

2 Theoretical Background

2.1 The Sequence Memoizer

The Hierarchical Pitman-Yor Process. Let us consider a vocabulary Y comprising
K words. For each word y ∈ Y , let G(y) be the (to be estimated) probability of y; let
also G = [G(y)]y∈Y be the vector of word probabilities. The Pitman-Yor process [9] is
a prior that can be imposed over the vector of word probabilities G. We can write

G|d, θ, G0 ∼ PY(d, θ, G0) (1)

where d ∈ [0, 1) is the discount parameter of the process, θ > −d is its strength param-
eter, and G0 = [G0(y)]y∈Y is its base distribution, expressing the a priori probability
of a word y before any observation, usually set to G0(y) =

1
K ∀y ∈ Y . Now, consider

a sequence of words {yt}Tt=1 drawn independently and identically (i.i.d.) from G

yt|G ∼ G, t = 1, . . . T (2)

Integrating out G, the joint distribution of the variables {yt}Tt=1 can be shown to exhibit
a clustering effect. Specifically, given the first T − 1 samples drawn i.i.d. from G,
{yt}T−1

t=1 , it can be shown that the new sample yT is either (a) drawn from the base
distribution G0 with probability θ+dK

θ+T−1 , or (b) is selected from the existing draws,
according to a multinomial allocation, with probabilities proportional to the number of
the previous draws with the same allocation.

The above generative procedure produces a sequence of words drawn i.i.d. from G,
with G marginalized out. Notice the rich-gets-richer clustering property of the process:
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the more words have been assigned to a draw from G0, the more likely subsequent
words will be assigned to the draw. Further, the more we draw from G0, the more likely
a new word will again be assigned to a new draw from G0. These two effects produce a
power-law distribution where unique words are observed, most of them rarely [9].

Under the Pitman-Yor process, the drawn words are always considered to be inde-
pendent of each other. However, in practical applications, it is usually the case that a set
of sequential observations are always closely interdependent, thus the i.i.d. assumption
is clearly invalid. An nth order hierarchical Pitman-Yor process (HPYP) [10] resolves
these issues by postulating a hierarchical model of the form

Gu ∼ PY(d|u|, θ|u|, Gπ(u)) (3)

where u is the context variable, denoting the set of the previously drawn (up to) n
words, Gu(y) is the probability of the current word taking on the value y given its
context u, Gu = [Gu(y)]y∈Y is the vector of probabilities of all the possible words
y ∈ Y when the context is u, and π(u) is the prefix of u consisting of all but the latest
word in u.

Note that the base distribution Gπ(u) in (3) is also unknown; for this reason, we
recursively place a prior Gπ(u) over it using again the general expression (3), but now
with parameters θπ(u), dπ(u), and Gπ(π(u)) instead. This recursion is repeated until we
get to G∅, that is we reach an empty context, on which we place a simple Pitman-Yor
process prior of the form

G∅ ∼ PY(d0, θ0, G0) (4)

where G0 is a simple base distribution with G0(y) = 1
K ∀y ∈ Y . Inference for the

HPYP model is performed using a simple Gibbs sampling scheme, described in [10].

The Sequence Memoizer as an Unbounded-Depth HPYP Model. The sequence mem-
oizer is basically an unbounded-depth HPYP model. Specifically, the sequence
memoizer is based on the postulation of an HPYP model of the form (3), with the max-
imum length n of its context variables u taken as tending to infinity, i.e., n → ∞.

As is obvious, inference in such an unbounded-depth HPYP model might entail a
large number of recursions of the form (3), a fact that could possibly give rise to pro-
hibitive computational costs for the model inference algorithms when the length of the
drawn sequences increases considerably. To constrain the learning of these latent vari-
ables, a special hierarchical Bayesian prior based on Pitman-Yor processes is employed
in this work, which promotes sharing of statistical strength between subsequent symbol
predictive distributions for equivalent contexts of different lengths [10]. Specifically, in
this work, as a way of mitigating these issues, we exploit the following result [11]:

Theorem 1. Consider a single path in a graphical model G1 → G2 → G3 with G2

having no children other than G3. Then, if G2|G1 ∼ PY(d1, 0, G1) and G3|G2 ∼
PY(d2, 0, G2), it holds G3|G1 ∼ PY(d1d2, 0, G1) with G2 marginalized out.

Based on Theorem 1, the computational complexity of the SM model inference al-
gorithms, which are otherwise identical to those of the HPYP model, are considerably
reduced in cases of long drawn sequences, without compromises in the model’s effi-
cacy. In this paper, we perform inference using the Gibbs sampler proposed in [10], as
described in the previous section.



54 S.P. Chatzis, D.I. Kosmopoulos, and G.M. Papadourakis

At test time t, inference consists in using the sequence memoizer to compute the
probability q(yt|y<t) of the modeled variable being equal to the symbol yt, given a
context u = {yτ}t−1

τ=1. Similar to the discussions of the previous section, the predic-
tive probability of the sequence memoizer is taken as the posterior expectation of the
distribution Gu(yt) of the current word taking on the value yt, given its context u, i.e.

q(yt|y<t) ! E [Gu(yt)] (5)

where the distribution of Gu(yt) is given by (3), and u ! {yτ}t−1
τ=1.

2.2 The Mean-Field Principle

The mean-field principle is originally a method of approximation for the computation
of the mean of a Markov random field. It comes from statistical mechanics (e.g. [12]),
where it has been used as an analysis tool to study phase transition phenomena. More
recently, it has been used in computer vision applications (e.g. [13,14]), graphical mod-
els (e.g. [15], and references therein) and other areas (e.g. [16]). The basic idea of the
mean-field principle consists in neglecting the fluctuations of the variables interacting
with a considered variable. As a result of this assumption, the resulting system behaves
as one composed of independent variables for which computation gets tractable.

More specifically, let us consider a set of interdependent variables {yt}Tt=1 that define
a Markov random field with a specified neighborhood system. For example, a neighbor-
hood system of first-order sequential nature may be considered, in which case the postu-
lated Markov random field reduces to a first-order Markov chain. Under the mean-field
principle, the joint distribution p({yt}Tt=1) is approximated by the product

p({yt}Tt=1) ≈
T∏

t=1

p̂t(yt) (6)

Here, the p̂t(yt) is an approximation of the marginal distribution p(yt) of the field at the
site (e.g., time point) t. This latter quantity is expressed under the mean-field principle
in the following conditional form p̂t(yt) ≈ p(yt|{ŷτ}τ∈N (t)) where ŷτ is the expected
value of yτ , i.e., ŷτ = E[yτ ] and N (t) is the set of neighbors of site t. E.g., in the case of
an infinite-order sequential nature neighborhood system, we have p̂t(yt) ≈ p(yt|ŷ<t).

More generally, we talk about mean field-like approximations when the value of a
variable observed at a site t is considered independent of the fluctuations of the values
at other sites in its neighborhood, which are all set to constants (not necessarily their
means), independently of the value at site t. This family of approximations allows for
a considerable increase in computational efficiency. It has the drawback though that,
while the mean-field approach has been theoretically formulated using a variational
framework, mean-field-like approximations have not yet been shown to have such a
theoretically founded motivation [7].

3 Proposed Approach

Let us first introduce some notation. Let us suppose an N -state HMM where the hidden
emission density of each state is modeled by a K-component finite mixture model.
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The postulated HMM comprises the set of parameters Θ = {W ,Ψ}, where W =
(wij)

N,K
i,j=1 are the mixing weights of the component distributions of the mixture models

used as the emission probabilities of the HMM states, and Ψ is the set of parameters of
the mixture components of the state emission probabilities.

Let X = {xt}Tt=1 be an observed data sequence, with xt ∈ X ⊆ Rd, modeled by the
postulated HMM. The latent (unobserved) data associated with this sequence comprise
the corresponding state sequence S = {st}Tt=1, where st = 1, . . . , N is the indicator
of the state the tth observation is emitted from, and the sequence of the corresponding
mixture component indicators L = {lt}Tt=1 , where lt = 1, . . . ,K indicates the mixture
component density that generated the tth observation.

As already discussed, in this paper we aim to introduce an (approximately) infinite-
order non-stationary HMM. That is, we seek a model with likelihood function

p(X |Θ) =
∑

S,L

πs1

[
T∏

t=2

p(st|s<t)

] [
T∏

t=1

wstltp(xt|Ψ stlt)

]
(7)

where we denote s<t = {sτ}t−1
τ=1, and πi are the initial state probabilities.

As we observe, key components of the sought model comprise the considered state
transition probabilities p(st|s<t) which take into account the whole history of past
states at any time point, and vary with time, thus giving rise to a non-stationary na-
ture for our model. Based on the discussions of Section 2.2, the desired form of the
state transition probabilities of our model can be obtained by modeling them as the
predictive densities of a pre-trained sequence memoizer model. Apparently, such a pos-
tulated sequence memoizer would also yield the initial state probabilities of the model;
thus, we eventually obtain

p(X |Θ) =
∑

S,L

[
T∏

t=1

q(st|s<t)

] [
T∏

t=1

wstltp(xt|Ψ stlt)

]
(8)

for the likelihood function of the postulated model, where q(st|s<t) is given by (5).

Definition 1. We define as the infinite-order HMM (HMM∞) model an HMM the
Markov chain (initial state and state transition) probabilities of which take under con-
sideration the whole history of model states, by being modeled as the predictive proba-
bilities of a postulated sequence memoizer model.

3.1 Model Training

Consider a training sequence of length T , X = {xt}Tt=1. Training for the proposed
HMM∞ model using the given sequence is performed in two phases.

First Phase. In the first phase, we need to train the sequence memoizer used to ob-
tain the Markov chain probabilities of our model. To effect this procedure, we must
obtain training sequences of the latent state variables st of our model. For this pur-
pose, we resort to the following solution: We first train a simple first-order HMM with
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similar finite mixture state emissions, M0, on the training dataset X , using the EM al-
gorithm [17]. Subsequently, we apply the Viterbi algorithm for the model M0 to obtain
a segmentation of the training sequence X , i.e. compute the sequence of optimal states
Ŝ = {ŝt}Tt=1. Using the estimated state sequence Ŝ, we can perform ”training” of the
postulated sequence memoizer (see Section 2.2), using the Gibbs sampler of [10].

Second Phase. In the second phase of our training algorithm, we proceed to estimation
of the rest of the model parameters, that is the parameters of the state emission densities
of the model. We employ maximization of the likelihood of the model, given by (11),
considering that the sets X , S and L comprise our complete data. Nevertheless, from
(11), it becomes apparent that the complete-data log-likelihood of our model is not
computationally tractable, as it entails summation over all possible s<t configurations
at each time point t. Therefore, an approximation is needed.

We resort to a mean-field-like approximation, eventually yielding

L ≈
T∑

t=1

N∑

j=1

N∑

i=1

p(st = j, st−1 = i|X)× log q(st = j|st−1 = i; ŝ<t−1)

+
N∑

j=1

K∑

k=1

p(lt = k, st = j|X)log
[
wjkp(xt|Ψ jk)

]
(9)

In this expression, we essentially assume that in each term q(st = j|s<t), the vari-
ables {sτ}t−2

τ=1 do not fluctuate with st and st−1, but, rather, they are constants equal
to the known estimates {ŝτ}t−2

τ=1, obtained at the first phase of the training algorithm
of our model. This is in essence a mean-field-like approximation of the complete-data
log-likelihood of our model. Note that, under such an approximation, we don’t obtain
a bound to the log-marginal, unlike a standard mean-field approximation. Therefore,
our approximation does not allow for the training algorithm to optimize the true model
objective function. However, the major advantage of our approach is that it allows for
approximating the partition function of the infinite-order HMM∞ model using an effi-
cient algorithm, similar to the method used in the case of first-order HMMs.

Indeed, based on the above approximation, the forward probabilities in the case of
the HMM∞ model yield

αt+1 (j) =

[
N∑

i=1

αt (i) q(st+1 = j|st = i; ŝ<t)

]
×

K∑

k=1

wjkp (xt+1|Ψ jk) (10)

with initialization similar to first-order HMMs [18]. Similar, the backward probabilities
of our model yield

βt (i) =
N∑

j=1

q(st+1 = j|st = i; ŝ<t)

×
K∑

k=1

wjkp (xt+1|Ψ jk)βt+1 (j)

(11)

with initialization similar to first-order HMMs [18].
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Note that the employed mean-field-like approximation does not constitute an as-
sumption of the HMM∞ model itself, but is only applied to obtain a computationally
tractable expression for its complete-data log-likelihood. In other words, the Markov
chain probabilities of the HMM∞ model are still computed using the whole history of
state labels {sτ}t−1

τ=1, a computation made possible by exploiting the sequence memo-
izer. Hence, the model itself continues to postulate infinite-order state transitions, taking
into account the whole history of state labels {sτ}t−1

τ=1, with no truncations imposed in
that respect. The truncation consists in only truncating the fluctuation of the values
{sτ}t−2

τ=1, by setting them to a constant appropriately obtained in the first phase of the
model training algorithm.

Based on these results, the state posterior probabilities p(st|X) of our model yield

p(st = j|X) =
αt (j)βt (j)∑N
i=1 αt (i)βt (i)

(12)

Finally, derivation of our model training algorithm completes with the computation
of the posterior probabilities of the mixture components, p(lt = k, st = j|X), and
of the estimates of the mixture model parameters Ψ and W . These expressions are
identical to the ones that hold for first-order HMMs with similar emission distributions,
thus we omit them for brevity (see, e.g., [19]).

3.2 Inference Algorithm

Inference in the context of the HMM∞ model comprises sequence labeling, and se-
quence probability estimation.

Sequence Labeling. Similar to first-order HMMs, sequence labeling using the HMM∞

model can be performed by application of the Viterbi algorithm [17], which here uses
the cost function

ξt(j) ! max
s<t

{
q(st = j|s<t)

K∑

k=1

wjkp (xt|Ψ jk)

}
ξt−1(st−1) (13)

and employs the recursion

ŝt = argmax
1≤i≤K

{
ξt(i)

}
(14)

The cost function (16) results in a dynamic programming problem which entails a
large (theoretically infinite) number of variables over which ξt(i) gets optimized. As
such, the incurred computational costs might become prohibitive in most real-world
scenarios. For this reason, we resort again to a mean-field-like approximation.

Specifically, we propose the following approximation: Let us begin with the second
time step, t = 2. The cost function ξt(i) reads

ξ2(j) ! max
s1

{
q(s2 = j|s1)

K∑

k=1

wjkp (x2|Ψ jk)

}
ξ1(s1) (15)
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Let us now continue to the next time-step, t = 3. The cost function ξt(i) now reads

ξ3(j) ! max
s2,s1

{
q(s3 = j|s2, s1)

K∑

k=1

wjkp (x3|Ψ jk)

}
ξ2(s2) (16)

At this point, we make the following key-hypothesis: We assume that, in ξ3(i), the vari-
able s1 does not fluctuate with s2 and s3, but, instead, it takes on a constant (“optimal”)
value ŝ1. This way, we eventually yield

ξ3(j) ! max
s2

{
q(s3 = j|s2; ŝ1)

K∑

k=1

wjkp (x3|Ψ jk)

}
ξ2(s2) (17)

This assumption is in essence a mean-field-like approximation of ξ3(i).
Generalizing this procedure, we reduce our dynamic programming problem to a sim-

pler one with bounded worst-case computational costs, where the cost function reads

ξt(j) ≈ max
1≤i≤N

{
q(st = j|st−1 = i; ŝ<t−1)

K∑

k=1

wjkp (xt|Ψ jk)

}

× ξt−1(i)

(18)

with the same backwards recursion. This construction gives, in turn, rise to another
issue: what is the appropriate selection of the values ŝ<t−1? Following the literature
(e.g., [20,21,15,14]), the values {ŝτ}t−2

τ=1 may be selected as the values of {sτ}t−2
τ=1 that

optimize some criterion. Here, the values of {ŝτ}t−2
τ=1 are obtained as follows:

1. First, we postulate a first-order HMM for the same problem, trained on the same
data as the considered HMM∞ model. We use this model to obtain an initial optimal
set Ŝ = {ŝt}Tt=1 using Viterbi algorithm.

2. Using this initial optimizer Ŝ, we run the dynamic programing recursions (21) of
the HMM∞ inference (Viterbi-like) algorithm. This way, a new sequence segmen-
tation is derived. This procedure may be repeated for a number of iterations.

At this point, we would like to emphasize that, again, the mean-field-like approximation
is not applied to the core assumptions of the HMM∞ itself. The proposed dynamic pro-
gramming algorithm for HMM∞ model inference entails “full” state transition prob-
abilities, that is state transition probabilities taking into account the whole history of
state labels {sτ}t−1

τ=1, with no truncations imposed in that respect. Therefore, the ap-
plication of the mean-field-like approximation does not affect the infinite-order nature
of the model; it only consists in truncating the fluctuations of {sτ}t−2

τ=1 with the st and
st−1 when computing the cost functions ξt(j).

Sequence Classification. Finally, computation of the probability of a sequence with
respect to a trained HMM∞ model can be performed by summation of the forward
probabilities at some time-point, similar to first-order HMMs.
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4 Experiments

To evaluate the efficacy of our approach, we considered three datasets from different do-
mains dealing with sequence classification. The workflow recognition [22], the RGBD-
HUDAACT [23] and the speaker identification [24].

We compared the standard HMM to our method, which uses the whole history in
order to quantify the merits of our approach. Both methods build models from which
we can draw samples. We tested the representation capabilities of those models in time-
series classification, which is an important domain for the computer vision and multime-
dia communities. We initialized the two methods using exactly the same initial values
for Θ = {π,A,W,Ψ}, so that the comparison was fair. The best number of states and
state components was experimentally decided based on classification accuracy.

Our source code was developed in MATLAB. The sequence memoizers used in our
model are obtained by Gibbs sampling, as suggested in [6]. We used 100000 samples, as
suggested in [10]. The implementation of this Gibbs sampler was taken from the sequence
memoizer software available at: http://www.sequencememoizer.com/

Furthermore, we have compared our method to two state-of-the-art methodologies
for time series classification, which do not make any Markovian assumption as well, but
are of different rationale: the Echo State Network (ESN) [25] and the Hidden Markov
Support Vector Machine (HMSVM) [26]. For the ESN we have used the Matlab toolbox
provided by the authors [25]. More specifically, we used a linear reservoir. We omitted a
number of frames at the beginning of each sequence to account for the initialization ef-
fect of the ESN and we performed median filtering to reduce jitter at the output. For the
HMSVM we used the library provided by the authors [26]. We employed for our experi-
ments the linear kernel. Both methods assign labels to each frame, so the ”winner” class
is the one to which the most frames were assigned. Below we detail our experimental
methods for each experiment. For both the ESN and the HMSVM we normalized the
input based on the mean and standard deviation to assist the optimization.

Workflow Recognition [22]. This dataset includes color image sequences acquired in
an industrial environment and the goal is to recognize tasks that consist a visual work-
flow. Each frame was modeled by the Zernike moments, of the pixel change history
images generated by the foreground objects (humans), up to order six. That yielded
feature vectors of dimension 31. We used the camera 1, depicting the first workflow,
which involved six tasks. We applied 50-fold cross validation. In each fold we selected
randomly five scenarios for training and the rest 15 for testing. We used a diagonal co-
variance matrix for the HMMs, to avoid overfitting. For the ESN we used 500 plain
nodes, which was efficient, small enough to avoid overfitting and effective. The number
of the output nodes, was equal to the number of classes and we used spectral radius
0.60, input scaling 0.3 and smoothing of noise level 0.0003 for optimal results. Regard-
ing the HMSVM the C parameter was set to 0.5 and for the rest we used the default
values.

RGBD-HUDAACT [23]. The second application used depth images to classify human
actions in an assistive living environment , and namely the following: ”get up from bed”,
”go to bed”, ”sit down”, ”eat meal”, and ”drink water”. Each frame was represented as
a moment-based vector of 31 elements, similarly to the previous experiment, which
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Table 1. Experimental results for the datasets Workflow Recognition [22], RGBD-HUDAACT
[23] and Speaker Identification [24]

Dataset WR RGBD- Speaker
Method HUDAACT Ident
HMM 68.49 63.33 97.56
HMM-inf 72.30 66.00 98.10
ESN 75.57 62.70 99.45
HMSVM 73.73 61.12 94.23

(a) The Workflow
Recognition dataset

(b) The RGBD-
HUDAACT dataset

(c) The Speaker Identifi-
cation dataset

Fig. 1. Experimental per class for the three datasets. The vertical axis is the accuracy (%) and the
horizontal the classes

in this case encoded the backward motion history image (decrease of depth). Again
we applied 50-fold cross validation using 35 samples of each action. In each fold we
selected randomly five scenarios for training and the rest 30 for testing. For the ESN
we used the same architecture and parameters with five output nodes this time. For the
HMSVM the C parameter was set to 20.

Speaker Identification [24]. To verify the applicability in other domains (which how-
ever can be combined via a fusion framework with vision applications), we finally con-
sidered a text-dependent speaker identification task, using the Japanese Vowels Data
Set. The pass-phrase used for speaker identification purposes comprised two Japanese
vowels, /ae/, successively uttered by nine male speakers. For each utterance, a 12-degree
linear prediction analysis was applied to obtain a discrete-time series with 12 LPC cep-
strum coefficients. The dataset involved nine speakers, who had to be recognized. We
used for training and testing the designated sets provided by the authors. For the ESN
we used a reservoir of 200 nodes with nine output nodes and same parameters. For the
HMSVM we used C = 0.5.
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The accuracies of all methods of in all our experiments are summarized in Table 1.
More detailed results concerning each class separately are given in Figure 1. The results
are given based on the average of all folds. What is remarkable here, is that in all the
experiments there is a statistically consistent benefit in using the proposed method as
opposed to using the standard HMM. As presented in Figure 1 the per class accuracy
is always higher on average. When we compare our method to the baseline methods of
ESN and HMSVM we notice that their performance is comparable. Here we present the
best results after experimentation with the parameters. Given the rather low differences
we cannot claim that our method is generally better, or not, compared to the linear
versions of the ESN and the HMSVM. The result depends on a variety of parameters,
which are not common to the different methods. Therefore we cannot guarantee a really
fair comparison, unlike in the case of comparing the standard HMM to our method.

The fact that our performance is comparable to some of the state of the art methods
is also remarkable. We proposed a method for estimating a generative model, which
is generally more appropriate for simulation applications (via model sampling), than
for classification tasks. However, the ESN and the HMSVM are discriminative meth-
ods and thus usable in classification applications, but their models cannot be used for
sampling. The proposed method can impact all generative HMM-based methods that
are employed for time-series modeling. Furthermore, the discriminative methods that
utilize the HMMs, such as those that optimize entropy criteria, e.g., [27] or methods
that optimize the margin between classes, e.g., [28] can benefit from our approach.

5 Conclusions

We presented the hidden Markov model with infinitely long time dependencies thus
effectively by-passing the Markovian assumption. We provided algorithms for model
training and inference, and evaluated their efficacy in real-world applications. We tack-
led a non-tractable problem by employing a mean-field-like approximation. As we
showed, our method outperforms the standard HMM in classification, thus it enhances
its representation capability. Furthermore, it has comparable performance to state-of-
the-art methods which have been trained for discriminative tasks. Currently we fit the
model to the data without optimizing the discrimination capability of the model. We
plan to extend our method to models trainable explicitly for discriminative tasks.
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