
Hand Shape and 3D Pose Estimation using

Depth Data from a Single Cluttered Frame

Paul Doliotis1,2, Vassilis Athitsos1, Dimitrios Kosmopoulos2, and Stavros
Perantonis2

1 Computer Science and Engineering Department
University of Texas at Arlington

Arlington,Texas
USA

2 Institute of Informatics and Telecommunications
NCSR Demokritos
Athens, Greece

Abstract. This paper describes a method that, given an input image of
a person signing a gesture in a cluttered scene, locates the gesturing arm,
automatically detects and segments the hand and finally creates a ranked
list of possible shape class, 3D pose orientation and full hand configu-
ration parameters. The clutter-tolerant hand segmentation algorithm is
based on depth data from a single image captured with a commercially
available depth sensor, namely the KinectTM . Shape and 3D pose esti-
mation is formulated as an image database retrieval method where given
a segmented hand the best matches are extracted from a large database
of synthetically generated hand images. Contrary to previous approaches
this clutter-tolerant method is all-together: user-independent, automati-
cally detects and segments the hand from a single image (no multi-view
or motion cues employed) and provides estimation not only for the 3D
pose orientation but also for the full hand articulation parameters. The
performance of this approach is quantitatively and qualitatively eval-
uated on a dataset of real images of American Sign Language (ASL)
handshapes.

1 Introduction

Gesture recognition has become an essential component for many natural user
interface (NUI) systems. It provides humans the ability to interact with machines
naturally without the use of any cumbersome mechanical devices. A gesture can
be defined by any bodily motion, however hand gestures are more commonly
used and can be found in a wide range of applications such as: sign language
recognition, robot learning by demonstration and gaming environments, just to
name a few. Recognizing hand gestures is a very challenging task and requires
solving several sub-problems like automatic hand detection and segmentation,
3D hand pose estimation, hand shape classification and in some cases estimation
of the full hand configuration parameters.
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Fig. 1. System input and output. Given the input image, the system goes through the
database of synthetic images in order to identify the ones that are the most similar
to the input image. Eight examples of database images are shown here, and the most
similar one is enclosed in a red square. The database currently used contains more than
100,000 images.

In this work we specifically address the problem of 3D hand pose and shape
estimation. Towards developing an effective solution several challenges may arise
and some of the main ones are listed bellow:

– High dimensionality of the problem

– Noisy hand segmentation due to cluttered backgrounds

– Increased pose variability and self-occlusions that frequently occur when a
hand is in motion

Hand pose estimation is formulated here as an image database retrieval prob-
lem. The closest matches for an input hand image are retrieved from a large
database of synthetic hand images. The ground truth labels of the retrieved
matches are used as hand pose estimates from the input (Figure 1). This paper
is motivated by the work presented in [1]. However, one limitation of that method
was that it required manual segmentation in order to define a bounding box for
the gesturing hand. We propose an automatic hand segmentation method that
relies on depth data acquired from the Microsoft KinectTM device [2]. Another
contribution is that we achieve improved performance under clutter by using a
similarity measure which is also based on the depth data. A main assumption
we make is that the gesturing arm is the closest object to the camera and so
it can easily be segmented from the rest of the body and other objects based
on depth. To measure the effectiveness of this new method we have collected a
dataset of American Sign Language(ASL) handshapes.

In the following Section 2 of this paper we briefly review previous work on
3D hand tracking and pose estimation. Afterwards, in Section 3 we describe in
detail our automatic hand segmentation method, the result of which is given as
input to our 3D hand pose estimation algorithm (Section 4). Finally we present
experimental results (Section 5) and we conclude with a discussion on ideas for
future-work (Section 6).
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2 Related work

Some successful early works require specialized hardware or the use of cumber-
some mechanical devices. In [3] Schneider and Stevens use a motion capture
system while in [4] Wang and Popović employ visual markers with a color glove.
Unfortunately such methods impede the user’s natural interaction in the scene
and they require a costly and complex experimental setup.
Nowadays research is more focused on purely vision-based methods that are
non-invasive and are more suitable for Natural User Interface(NUI) systems.
The most recent review on vision-based hand pose estimation methods has been
published by Erol et al. [5]. They define a taxonomy where initially these ap-
proaches are divided in two main categories: “partial pose estimation” and “full
DOF pose estimation”. “Partial pose estimation” methods can be viewed as
extensions of appearance-based systems. They usually take as input image fea-
tures and map them a small discrete set of hand model kinematic parameters.
A main disadvantage is that they require a large amount of training data and
hence are not scalable. Appearance-based methods for hand pose recognition,
like [6,7,8,9], can tolerate clutter, but they are limited to estimating 2D hand
pose from a limited number of viewpoints. Our method can handle arbitrary
viewpoints.

“Full DOF pose estimation” approaches are not limited to a small, discrete
set of hand model configurations. They target all the kinematic parameters (i.e.,
joint angles, hand position or orientation) of the skeleton of the hand, leading to
a full reconstruction of hand motion. These approaches can be further divided
into two other categories: (1) “Model-based tracking” and (2) “Single frame pose
estimation”.

“Model-based methods” [10,11,12,13] typically match visual observations to
instances of a predefined hand model. Formally this is expressed as an opti-
mization problem where an objective function is required in order to measure
similarity between actual visual observations and model hypotheses. The main
drawback is increased computational complexity due to the high dimensionality
of the model’s parameter space. On the other hand they require less training
and are easily scalable.

“Single frame pose estimation methods” try to solve the hand pose estimation
problem without relying on temporal information. The lack of temporal infor-
mation increases the difficulty of the problem. However successful approaches
can tackle the negative effect of motion blur and can also be employed to initial-
ize tracking-based systems. Athitsos et al. [1] have proposed such a single pose
estimation method by creating a large database of synthetic hand poses using
an articulated model and retrieve the best match from this database. However
they require manual segmentation of the test data.

Most recently, due to the advent of commercially available depth sensors,
there is an increased interest in methods relying on depth data [14,15,10,16].
Keskin et al. [14] train Random decision forests (RDF) on depth images and then
use them to perform per pixel classification and assign each pixel a hand part.
Then, they apply the mean shift algorithm to estimate the centers of hand parts
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to form a hand skeleton. However they don’t explicitly address the automatic
hand segmentation problem.

According to the aforementioned taxonomy, this paper describes an “appearance-
based method” aiming at 3D orientation estimation using features from a single
frame. This work builds on top of the work described in [1], where hand pose
is estimated from a single cluttered image. The key advantages of the method
described here over [1] are that we integrate an automatic hand segmentation
method and we use a similarity measure that is based on depth data.

3 Hand segmentation

As a first step we need to perform a rough segmentation by thresholding the
depth data in order to obtain the gesturing arm. Given the assumption that the
hand is the closest object to the camera we can automatically find the lower
depth threshold. As an upper threshold we take an initial rough estimation,
since at this point we are only interested at segmenting the arm. A more precise
thresholding is needed however if we need to further segment the hand. To find
the palm cutoff point we need to perform the following steps:

1. Compute the axis of elongation for the gesturing arm.

2. Create a sequence of widths.

3. Perform a gradient descent on the sequence of widths in order to identify
the local (or global) minimum, at which the palm cutoff point is located.

3.1 Finding the axis of elongation

The result of the initial rough segmentation is a blob representing the gesturing
arm. The boundary of that blob is essentially a set S ofm points in 2 dimensional
space: S = {x1, x2, . . . , xm} ∈ R

2. Noisy smaller groups of pixels are usually part
of S. To remove them, we morphologically open the binary image by eliminating
all connected components (objects) that have fewer than 20 pixels, considering
an 8-connected neighborhood. The remaining boundary pixels will belong to a
new set S ′ = {x′

1, x
′

2, . . . , x
′

k} ∈ R
2. In order to define the elongation axis of the

gesturing arm we will compute the Minimum Enclosing Ellipsoid(MEE) for the
boundary pixels x′

i ∈ S ′. The major axis of the MEE coincides with the arm’s
axis of elongation (Figure 2).
An ellipsoid in center form can be given by the following equation:

E =
{

x′ ∈ R
2|(x′ − c)TE(x′ − c) ≤ 1

}

(1)

where c ∈ R
2 is the center of the ellipse E and E is a 2 × 2 positive definite

symmetric matrix, E ∈ S
2
++.

So finding the Minimum Enclosing Ellipsoid can be formulated as an optimiza-
tion problem as follows:
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minimize
E,c

det(E−1)

subject to (x′

i − c)TE(x′

i − c) ≤ 1, i = 1, . . . , k

E ≻ 0

(2)

Fig. 2. To the left is an example of a Minimum Enclosing Ellipsoid(MEE) along with
the major axis. To the right we visually demonstrate the desired palm cutoff loca-
tion(blue line)

An implementation of a solver based on the Khachiyan Algorithm [17] can be
found at the web [18]. The major axis for the arm boundary pixels will coincide
with the major axis of the Minimum Enclosing Ellipsoid.

3.2 Creating the sequence of widths

After the major (or elongation) axis is obtained we can easily create a sequence
of widths. In the discrete domain, the elongation axis is comprised of a set of
pixels P = {p1, p2, . . . , pm}. For each pi we compute the maximum distance
of arm pixels belonging to the line that goes through pi and it’s direction is
perpendicular to the direction of the elongation axis. The main idea is that at
the palm cutoff point the sequence will reach a global or local minimum. Since
the contour of the segmented arm is very noisy our method could be prone to
other local minima. To alleviate this effect we apply a smoothing on our 2D
contour.

Smoothing 2D contours is achieved by using Local Regression Lines. Because
of the linear nature of fitting it might be possible to loose important information
in special cases like corners (or fingertips). To tackle this issue we opt to fit locally
the line by employing Weighted Orthogonal Least Squares. The weights are gen-
erated from a Gaussian distribution. To be able to calculate the local regression
lines we must define an order for the all pixels x′

i that ∈ S ′ = {x′

1, x
′

2, . . . , x
′

m}.
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Fig. 3. This a plot of the sequence of widths. The desired local minimum is highlighted
indicating the position for the palm cutoff point.

Such an order can be defined with many techniques such as boundary tracing
and chain codes. An implementation of this smoothing technique can be found
at the web [19].

3.3 Gradient descent

After the original contour is smoothed the sequence of widths is further filtered
with a 1D horizontal mask of ones and of size 5. The next step is to perform
a gradient descent in order to identify the local minimum at which the palm
cutoff point will lie. As a starting point we choose the global maximum (i.e. the
highest width) which will always reside in the hand area. Then we move towards
the end of the arm until we reach our local minimum. In Figure 3 we can see a
plot of the sequence of widths along with the desired local minimum where the
palm cutoff point is located.

4 Framework for Hand Pose Estimation

We model the hand as an articulated object, consisting of 16 links: the palm
and 15 links corresponding to finger parts. Each finger has three links (Figure
4). There are 15 joints, that have a total of 20 degrees of freedom (DOFs). For
the 20-dimensional vector of joint angles we use synonymously the terms “hand
shape” and “hand configuration.”

The appearance of a hand shape also depends on the camera parameters. For
simplicity, we consider only the camera viewing direction (two DOFs), and image
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plane orientation. We use the terms “camera parameters,” “viewing parameters”
and “3D orientation” synonymously to denote the three-dimensional vector de-
scribing viewing direction and camera orientation. Given a hand configuration
vector Ch = (c1, ..., c20) and a viewing parameter vector Vh = (v1, v2, v3), we
define the hand pose vector Ph to be the 23-dimensional concatenation of Ch

and Vh: Ph = (c1, ..., c20, v1, v2, v3).

Fig. 4. Synthetic images of hands. Left: the articulated hand model. The palm and 15
finger links are shown in different colors. Middle: the 20 basic shapes used to generate
model images in our database. Right: four 3D orientations of the same hand shape.

Using these definitions, our framework for hand pose estimation can be sum-
marized as follows:

1. Preprocessing step: create a database containing a uniform sampling of all
possible views of the hand shapes that we want to recognize. Label each view
with the hand pose parameters that generated it.

2. Given an input image, retrieve the database views that are the most similar.
Use the parameters of the most similar views as estimates for the image. The
most similar views (Figure 1) are retrieved according to a similarity measure
(e.g. Euclidean distance, chamfer distance)

4.1 Database

Our database contains right-hand images of 20 hand shape prototypes (Figure
4). Each prototype is rendered from 86 different viewpoints (Figure 4), sampled
approximately uniformly from the surface of the viewing sphere. The rendering
is done using a hand model and a computer graphics software ([20]). To ac-
commodate rotation-variant similarity measures (like the chamfer distance), 48
images are generated from each viewpoint, corresponding to 48 uniformly sam-
pled rotations of the image plane. Overall, the database includes 4128 views of
each hand shape prototype and 82,560 images overall. We refer to those images
using the terms “database images,” “model images,” or “synthetic images.”

4.2 Similarity measures

Chamfer distance The chamfer distance [21] is a well-known method to mea-
sure the distance between two edge images. Edge images are represented as sets
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of points, corresponding to edge pixel locations. The X-to-Y directed chamfer
distance c(X,Y ) is defined as

c(X,Y ) =
1

|X |

∑

x∈X

min
y∈Y

‖x− y‖ , (3)

where ‖a− b‖ denotes the Euclidean distance between two pixel locations a and
b. The undirected chamfer distance C(X,Y ) is

C(X,Y ) = c(X,Y ) + c(Y,X) . (4)

We will use the abbreviations DCD to stand for “directed chamfer distance”
and UCD for “undirected chamfer distance.”

Depth matching Test data have been captured via theKinectTM device which
offers two synchronized streams, one RGB and one depth stream. Frame reso-
lution is 640 × 480. A depth image is a gray-scale image, where each pixel is
assigned an intensity value according to how far or close it is located from the
camera. We have also managed to create depth-maps for our synthetically gen-
erated database images using a 3D modeling and animation software [20]. Some
examples of our depth-maps are depicted in Figure 5. Both, model and test
depth images are normalized in order to achieve translation invariance for the
z-axis. All depth values are in the range from 0 to 1. The depth similarity mea-
sure between two images is defined as the total sum of their pixel-wise Euclidean
distances. Through the rest of this paper we will refer to the depth matching
similarity measure as depthSM .

Weighted Depth matching and Chamfer distance Another similarity mea-
sure is defined by combining the first two similarity measures. In the following
equation the WeightedSM is a weighted sum of depthSM and UCD:

WeightedSM = l1 × depthSM + l2 × UCD (5)

In our experiments l1 = l2 = 0.5.

5 Experiments

We have tested our system on a challenging dataset of 94 right hand images
of American Sign Language(ASL) handshapes. The images are captured with
the KinectTM device in a highly cluttered scene where the hand is not cleanly
pre-segmented. We will refer to this dataset as KinectHandshapes. These 94
test images are provided in both formats, RGB and depth. We have manually
established pseudo-ground truth for each test image, by labeling it with the
corresponding shape prototype and using the rendering software to find the
viewing parameters under which the shape prototype looked the most similar to
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Fig. 5. The two depth-maps at the left side are “database depth-maps” and have been
rendered with a 3D modeling software. The two depth-maps at the right side are “test
depth-maps” and they have been captured by the KinectTM device.

the test image. This way of estimating viewpoint parameters is not very exact; we
found that manual estimates by different people varied by 10-30 degrees. Model
views cannot be aligned perfectly because the anthropometric parameters (like
finger lengths and widths) of hands in test images do not match those of the
model, and because the hand shapes in the real images are not exact replications
of the 26 shape prototypes.

We consider a database view V to be a correct match for a test image I if
the shape prototype with which we label I is the one used in generating V , and
the manually estimated viewing parameters of I are within 30 degrees of those
of V ([22]). On average, there are 30.4 correct matches for each test image in the
database. Our measure of retrieval accuracy for a given test image I is the rank
of the highest-ranking correct match that was retrieved for I. 1 is the highest
(best) possible rank.

Table 1. Results for KinectHandshapes dataset. For every method used, we show
the percentage of test images for which the highest ranking correct match was within
each range. DCD stands for “image-to-model directed chamfer distance”. UCD depth
contours, is undirected chamfer distance between hand contours from depth images
and full edges from model images. In UCD color edges, skin color segmentation has
been employed to extract the full edges

Method used 1 1-4 1-16 1-64 1-256

UCD depth contours 14.74 20.0 32.63 40.0 62.11
UCD color edges 9.57 14.89 21.28 32.98 55.32
depthSM 34.04 44.68 61.70 76.60 87.23
weightedSM 34.04 44.68 61.70 76.60 87.23

From the experiments on the KinectHandshapes dataset it is evident that us-
ing depth information from the depth-maps enhances the discrimination power
of our method, even in highly uncontrolled and cluttered environments. It out-
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performs even the case “UCD color edges” where full edges of the hand are
available due to color information.

We have also evaluated quantitatively our automatic hand segmentation
method. To this end we compared for all of our test images the distance between
the automatically generated palm cut-off points and the manually specified ones.
For the 80.85% of our images the distance (measured in pixels) is negligible. The
distance is less than 15 pixels for the 85.11% and less than 25 for the 92.55% of
the images ( Table 2).

Table 2. Results for our Hand segmentation method

range (measured in pixels) 0 0-15 0-25 0-45 0-68

percentage of test images 80.85 85.11 92.55 96.81 100

6 Discussion and future work

We have presented a new method for hand pose estimation from a single depth
image. Our method combines a novel hand segmentation method and a simi-
larity measure (depthSM) based on depth information from depth images.The
similarity measure is used to retrieve the best matches from an image database,
thus providing estimates for the 3D hand pose and hand configuration. Depth
information increases the discrimination power of our method, according to the
experiments conducted. Retrieval accuracy is still too low for the system to be
used as a stand-alone module for 3D hand pose estimation. However estimating
hand pose from a single image can be useful in automatically initializing hand
trackers. Our system currently doesn’t achieve real-time performance. In order
to do so and since our method is inherently parallel, we are planning to take ad-
vantage of the GPU’s processing power. Additional future work will be to define
more sophisticated similarity measures further exploiting depth information.
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