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Abstract

Modelling and classification of time series stemming from visual workflows
is a very challenging problem due to the inherent complexity of the involved
activity patterns and the difficulty to track the moving targets. In this pa-
per we propose a framework for classification of visual tasks in industrial
environments. We propose a novel method to automatically segment the in-
put stream and to classify the resulting segments using prior knowledge and
HMMs, combined through a genetic algorithm. We compare this method to
an Echo State Network (ESN) approach, which is appropriate for general-
purpose time-series classification. In addition, we explore the applicability
of several fusion schemes for multi-camera configuration in order to mitigate
the problem of limited visibility and occlusions. The performance of the
suggested approaches is evaluated on real-world visual behaviour scenarios.

Keywords: industrial workflow monitoring, HMM, ESN, multi-stream
fusion

1. Introduction

Intelligent visual surveillance and classification of visual tasks are research
fields rapidly gaining momentum over the last years. Focusing on industrial
plant smart monitoring, the aim is to recognise tasks happening in the scene,
to monitor the smooth running of a workflow and to detect any abnormal
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Figure 1: Example of an industrial scenario: a workflow consists of several tasks of different
length, which can be permutable (e.g., tasks 3 and 4 in this example), and the scene may
present irrelevant motion and occlusions.

behaviours. Deviations from the workflow may cause severe deterioration of
the quality of the product or may raise safety or security hazards.

An example of such an industrial scenario is shown in Fig. 1. By moni-
toring industrial scenes, one faces several challenges such as recording data
in work areas (camera positions and viewing area), industrial working condi-
tions (sparks and vibrations), cluttered background (upright racks and heavy
occlusion of the workers), high similarity of the individual workers (nearly all
of them wearing a similar utility uniform), and other moving objects (welding
machines and forklifts). Furthermore, the dynamics of workflow can be quite
complex. Several tasks within a workflow can have very different lengths
and can be permutable. The high intraclass and low interclass variances
make the classification process significantly challenging. Moreover, the tasks
can include both human actions and motions of machinery in the observed
process.

Related work. Behaviour and workflow recognition has attracted the interest
of many researchers. In the computer vision and machine learning commu-
nities, this is mainly addressed in applications such as abnormal behaviour
recognition or unusual event detection. Many approaches have been sug-
gested over the past years - a review can be found in (Turaga et al., 2008;
Poppe, 2010). Typically they build a model of normality and the methods
can differ in (i) the model used, (ii) the employed algorithm for learning the
model parameters, and (iii) the features used. Models might be previously
trained and kept fixed (Wang et al., 2008; Antonakaki et al., 2009) or adapt
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over time (Breitenstein et al., 2009) to cope with changing conditions. A
broad variety of extracted image features are used, such as global scene 3D
motion (Padoy et al., 2009) or object trajectories (Johnson and Hogg, 1996;
Antonakaki et al., 2009; Nguyen et al., 2005; Shi et al., 2004), which require
accurate detection and tracking. On the other hand, holistic methods, which
define features at the pixel level and try to identify patterns of activity using
them directly, can bypass the challenging processes of detection and track-
ing. Such methods may use pixel or pixel group features such as colour,
texture or gradient, see, e.g., (Zelnik-Manor and Irani, 2006) (histograms
of spatiotemporal gradients) and (Laptev and Perez, 2007) (spatiotempo-
ral patches). Pixel Change History is used in (Xiang and Gong, 2006) to
represent each target separately after frame differencing. However, the rep-
resentation of objects in PCH images is very simplistic (through ellipses),
and cannot cope with realistic environments. A popular feature to use for
action recognition is optical flow (see, e.g., (Efros et al., 2003)), where a rel-
atively small region of interest is extracted around a single human actor. In
our case we need a much more efficient method, since our goal is the online
classification at high frame rates. Furthermore, in real applications the tar-
gets may be partially occluded, so action recognition as defined in works like
(Efros et al., 2003) would not be feasible.

Various machine learning and statistical methods have been used for ac-
tivity recognition, such as clustering (Boiman and Irani, 2005) and density
estimation (Johnson and Hogg, 1996). A very popular approach is the Hidden
Markov Models (HMMs) (Ivanov and Bobick, 2000; Lv and Nevatia, 2006;
Padoy et al., 2009), due to the fact that they can efficiently model stochastic
time series at various time scales. However, the HMMs assume that the input
data are already segmented, an assumption which limits significantly their
application in realistic applications. For this purpose more complex HMM-
based methods have been proposed like the hierarchical HMMs (HHMMs)
(Fine et al., 1998; Padoy et al., 2009) and the layered HMMs (LHMMs)
(Oliver et al., 2004). However, the applicability of these methods assumes
that the Markovian assumption holds for the tasks to be recognised, in other
words the probability for the appearance of a task depends only on the pre-
vious one; this is not true in structured applications, where the execution of
a task may influence the appearance of a series of following tasks. In such
cases the Markovian assumption would be an oversimplification, which would
violate the application constraints. The use of higher order models would re-
sult into very high complexity (Rabiner, 1989) and would raise issues such as
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”how many previous states do we have to consider?”. With small number of
tasks the problem could be still tractable, however such approaches are not
scalable to large numbers of tasks.

In (Shi et al., 2004) the feasible task paths in a glycose calibration process
were defined, using the so-called P-net to encode possible paths. The goals
in our work are similar, but here we aim to show how to employ the HMM
framework for recognising tasks in workflows, because of its very important
extension possibilities (e.g., with fusion (Zeng et al., 2008) or robustness
(Chatzis et al., 2009)); furthermore we are going to encode possible paths as
solutions provided by a genetic algorithm to cover efficiently a huge search
space.

An alternative approach to HMM for the analysis of complex dynamical
systems is the Echo State Networks (ESNs) (Jaeger, 2001). ESNs offer several
benefits such as: (i) fast and simple learning of many outputs simultaneously,
(ii) possibility of both offline and online learning, (iii) capability of directly
dealing with high dimensional input data, and (iv) ability to learn com-
plex dynamic behaviours without any explicit Markovian assumption. On
the other hand, there are two main limitations involved: (i) they can only
recognise repetitive dynamics and (ii) all significant variations of task order
in a given workflow have to be learnt to provide the best classification re-
sults. Previously, ESNs were successfully used for time-series classification in
speech recognition (Skowronski and Harris, 2007), human-robot interactions
(Hellbach et al., 2008), emotion recognition (Scherer et al., 2008), medicine
(Verplancke et al., 2010). Recently we examined the effectiveness of ESNs
for workflow recognition from a single camera (Veres et al., 2010).

Nevertheless, the target visibility of specific tasks can be limited due
to camera configuration and self occlusions, therefore efficient ways to fuse
observations from multiple cameras are necessary. Several fusion schemes
for HMMs have been presented in the past, such as the synchronous HMMs
(Dupont and Luettin, 2000), the parallel HMMs (Vogler and Metaxas, 1999),
and the multistream fused HMMs (Zeng et al., 2008). However, their appli-
cability in multi-camera systems has been examined only to a limited extent,
for example in (Voulodimos et al., 2010), a previous work that is extended in
this paper to address online behaviour and workflow recognition in contin-
uous data streams, and in (Kosmopoulos and Chatzis, 2010), where offline
classification of segmented sequences was examined. As far as ESNs are con-
cerned to our knowledge no fusion techniques have been employed for similar
applications.
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(a) Person detection (Felzen-
szwalb et al., 2008)

(b) Person tracking (Grabner and
Bischof, 2006)

Figure 2: Examples of state-of-the art methods for detection and tracking. These ap-
proaches fail because of the dataset’s significant challenges, such as severe occlusions,
cluttered background, etc.

Contribution. To our knowledge, no state-of-the-art tracking-based approach
is able to cope with the significant particular challenges (as described above)
of workflow analysis in continuous streams within industrial environments.
We tried state-of-the-art methods for person detection/tracking (Felzenszwalb
et al., 2008; Grabner and Bischof, 2006)1; however, none of them showed sta-
ble and robust results in our industrial environment. Fig. 2(a) shows typical
failures of the detector in our dataset with a recall of 24% and a precision of
only 9%. Thus, tracking-by-detection approaches (e.g., (Huang et al., 2008))
cannot be used to generate trajectories. Also, the person could be hardly
tracked as displayed in Fig. 2(b). As for the tracker, it may start very well,
however it soon loses the person and drifts away.

The reasons for the failures pertain to the nature of the environment,
i.e., significant occlusions, clutter similar in structure/shape to a person, the
workers coloured similarly to the racks, and the unstable background due to
welding flare, machinery operation, and lighting changes. Any of these in
isolation would cause problems for person detection and tracking, but all of
them together make the problem especially difficult for both detection and
tracking and prohibit the use of approaches based on trajectories analysis.

1The code was downloaded from the authors webpages.
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Hence, we select to use holistic features, which can be efficiently com-
puted, do not rely on target detection and tracking and can be used to
model complex scenes (Veres et al., 2010). We contribute to the solution in
the following ways:

• We propose a novel method to automatically segment input stream and
to classify the resulting segments using prior knowledge and HMMs,
combined through a genetic algorithm.

• We compare this approach to an online ESN-based method for times
series analysis of continuous streams.

• We suggest to use fusion schemes for multiple cameras to provide wider
scene coverage, better cope with occlusions and thus improve accuracy.

The rest of this work is organized as follows. Sec. 2 formally defines the
problem. In Sec. 3 we describe scene descriptors. Sec. 4 and 5 describe
the HMM-based fusion architectures and the proposed continuous stream
segmentation method, while Sec. 6 presents the proposed GA-HMM that
combines HMM classifications of the automatically segmented tasks and prior
knowledge. In Sec. 7 the ESN-based approach addressing fusion is described.
Sec. 8 is the experimental section, while Sec. 9 discusses the lessons learnt
from our research and concludes the paper.

2. Problem formulation

Our goal is to monitor a pre-defined repetitive workflow. We describe a
workflow as a sequence of defined tasks that have to be executed in some
order, which is not strict though, i.e., permutations are allowed. A task is a
sequence of observations that corresponds to a physical action like “pick up
object and place it somewhere”.

Let It ∈ <n×m be gray scale image at time t. Given an image sequence
I = {I0, . . . , It} and a set of L+ 1 possible tasks, L# = {1, . . . , L,#}, where
# corresponds to a task not related to the workflow (void), we want to
associate a task l?t ∈ L# with each image It at time t, using past and present
measurements. This can be seen as a temporal L + 1 class classification
problem.

In the case of C different cameras the fusion problem can be stated in
a similar way: the difference lies in the number of given image sequences
Ic = {Ic,0, . . . , Ic,t}, 0 < c < C.
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3. Scene representation

Features extracted from the raw pixel values should be discriminative
enough to capture relevant changes with respect to the tasks but at the same
time be invariant to irrelevant variations. A wide variety of different features
have been proposed over the years, representing image appearance, shape or
motion. Motivated by the fact that workflow consists of object interactions
we use motion as our primary feature cue. To encode it robustly we use Local
Motion Classifiers (LMCs) (Veres et al., 2010; Adam et al., 2008).

A LMC M (x,y) observes a position (x, y) and the surrounding (n × m)
pixel neighbourhood Ω(x,y) of the image. The binary output of a motion
monitor applied on the image It is defined as:

M (x,y)(It) =

{
1 if

∑
(i,j)∈Ω(x,y) |It(i, j)− It−1(i, j)| > θM

−1 otherwise
(1)

Frame differencing is used to get changes of the image. If the changes are
significant (specified by θM) within Ω(x,y) the LMC M (x,y) returns a posi-
tive response. The LMCs can be seen as features that extract high level
information from each image.

A motion grid is defined as a set of LMCs. We sample an input image by
using a fixed overlapping grid. Each grid element corresponds to a LMC. For
one time instance t we concatenate the output of the LMCs within the grid
into a vector. The motion grid matrix is used as input for the classifiers:

ot = [o
(1,1)
t , . . . , o

(x,y)
t , . . . , o

(n,m)
t ],where o

(x,y)
t =

{
M (x,y) if (x, y) ∈ Rrel

not used otherwise
.

(2)
The employed features bear similarities to optical flow, since they are

based on the sum of pixel difference of the difference image. The difference
image itself can be seen as an approximation to the magnitude of the optical
flow, however our method is significantly faster compared, e.g., to (Efros
et al., 2003). Furthermore, it captures the location information in the image
and not in space, as, e.g., in (Nguyen et al., 2005), which would probably
require object detection. The occlusions do not affect the extracted features,
as long as they create consistent patterns.

4. HMM-based multi-camera fusion

The HMM is a very flexible framework that can be tailored to the needs
of several applications, one of them being the fusion of multiple streams.
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A HMM entails a Markov chain comprising a number of N states, with
each state being coupled with an observation emission distribution. A HMM
defines a set of initial probabilities {πk}Nk=1 for each state, and a matrix
A of transition probabilities between the states; each state st is associated
with an emitted observation ot. Gaussian mixture models are typically used
for modelling the observation emission densities of the HMM hidden states.
However, they are well known to be highly intolerant to the presence of
untypical data within the fitting datasets used for their estimation. Finite
Student’s t-mixture models have recently emerged as a heavier-tailed, robust
alternative to Gaussian mixture models, ensuring higher tolerance to outliers.
Since our data contain outliers, we are employing Student’s t-distribution as
observation model for the HMM (details on this approach can be found in
our previous work (Chatzis et al., 2009)).

(a) Feature fusion (b) Parallel fusion (c) Multistream fused

Figure 3: Various fusion schemes using the HMM framework for two streams: feature
fusion (mere concatenation of observation vectors), parallel fusion (independent individual
streams), and multistream fusion (cross-coupling between the streams).

In a multicamera setup the goal of fusion is to achieve behaviour recog-
nition results better than the results that we could attain by using the infor-
mation obtained by the individual data streams. We will briefly mention in
the following some representative approaches.

Among existing approaches feature fusion (Fig. 3(a)) is the simplest; it
assumes that the observation streams are synchronous. For streams from
C cameras and respective observations at time t given by o1t,..., oCt, the
proposed scheme defines the full observation vector as a simple concatenation
of the individual observations: ot = {oct}Cc=1.

The parallel HMM (Fig. 3(b)) assumes that the streams are independent
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of each other. It can be applied to cameras that may not be synchronised
and may operate at different acquisition rates. Each stream c may have its
own weight rc depending on the reliability of the source. Classification is
performed by selecting the class l̂ that maximises the weighted sum of the
classification probabilities from the streamwise HMMs.

Finally, the multistream fused HMM approach(Fig. 3(c)) (Zeng et al.,
2008) assumes cross-coupling between the streams and is able to capture their
interdependencies, by maximising entropy and mutual information criteria.
The interstream state-observation dependencies are generally modelled as
Gaussian mixture models. Similar to the case of parallel HMMs, the class
that maximises the weighted sum of the log-likelihoods over the streamwise
models is the winner.

5. Segmentation of continuous streams

To solve the time segmentation problem, which may undermine the util-
ity of our method in real applications we propose a method to fully automate
time segmentation. The key observations that enable a solution in our con-
text are: (i) the tasks are sequential but their order may vary; (ii) each task
is executed only once; (iii) the tasks have a variable duration, however, the
durations of the same tasks are statistically similar; and (iv) each task ends
with placing a part on the welding cell. Based on the above observations we
propose to create a model of the visible actions that signify the termination
of each of the tasks. To this end and assuming a single camera at this stage
we can use a HMM which is trained to recognise the termination of a task in
a fixed time window W . The training is effected including sequences of the
same duration for all tasks.

In the recognition phase we employ the HMM that we trained to recog-
nise endings of tasks. The input sequence is defined by a sliding time
window of constant duration W , which includes the current frame and all
the previous frames that fit in that window. We calculate the probability
p(ot,ot−1, ...,ot−W+1|λ) that the sequence of the last W observations signify
the end of the task using a standard forward-backward procedure (Rabiner,
1989) (ot is the observation vector at time t and λ is the trained HMM
model).

Furthermore, we use prior information to model the duration d of the all
tasks using a Gaussian mixture and we represent it as p(d|t− t0), where t0 is
the time when the previous task ended (or equivalently when the current task
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begun). Each component of the mixture is a Gaussian pdf of the durations
of a specific task. Given that each task is executed only once, it is reasonable
to remove the components corresponding to tasks that are recognised as
finished.

The overall probability that the current task is finished in time t is thus
given by:

p(et) = p(ot,ot−1, ...,ot−W+1|λ) · p(d|t− t0) (3)

Whenever the above quantity reaches a local maximum, which is above
an experimentally-defined threshold, we assume that the sequence should
be segmented. The observation vectors corresponding to the automatically
segmented tasks are buffered and used as input to the task-specific HMMs,
which will perform the classification as soon as a new task is segmented. The
equation (3) can be intuitively extended to incorporate observations from
several cameras, e.g., using the fusion schemes described above.

6. The GA-HMM for task sequence recognition

As may happen in many workflow cases, in our application scenario the
execution of one task prohibits the re-appearance of the same task until the
workflow is over. In this section we present a method on how to identify the
task sequence by using prior information without relying on the Markovian
assumption. For this we consider the following probabilities (when having K
tasks and 1 ≤ i ≤ K): (a) log(task(i)): the log probability distribution for
the the ith task in the task sequence (i.e., the task that appears at ith order),
(b) log(task(i)/task(i− 1)): the log probability distribution for the ith task
given its previous task. (a) is the output of the task-related HMMs, while
(b) can be learnt during training and stored as a priori information.

Given the above, and assuming that up to now we have k tasks that have
been executed in the workflow we can create an objective function, which
represents the log probability of the task sequence as follows:

E = log p(task(1), ..., task(k)) =

= w1

k∑
i=1

log p(task(i)) + w2

k∑
i=2

log p(task(i)|task(i− 1)) (4)

where w1, w2 are constants associated to the weight of each term.
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It is therefore possible to evaluate the different task permutations accord-
ing to (4) and select the one with the highest value. However, the number of
task permutations is given by K!/(K − k)! if we assume that no task repeti-
tions are allowed. For K = 7 for the total sequence we may have 5040 cases
to evaluate, for K = 20 the cases are more than 2.43 ∗ 1018, so this approach
is not scalable.

We propose a genetic algorithm to find a suboptimal, yet tractable solu-
tion using as objective function the above formula for E. Therefore we will
reference the proposed method as the GA-HMM approach. Given the num-
ber of tasks k executed so far we define the vector S = [task(1), ..., task(k)]
which encodes the task sequence so far. We allow the following operations:
(a) mutation: task(i) changes randomly its value to another value task(i)′,
provided that task(i)′ does not belong to S, and (b) crossover: if two so-
lutions S1, S2, we select a task1(i), task2(j) so that task1(i) ∈ S1 and
task1(i) /∈ S2, task2(i) /∈ S1 and task2(i) ∈ S2; then we interchange their
values in S1, S2. This single-value crossover generalises for subsets of values.

By defining the mutation and the crossover probability we are able to
obtain after a sequential evaluation a set of solutions, which will locally max-
imise E. For one task the solution is simply given by the log probability of a
single task as given by a HMM. As the number of segmented tasks increases
by one, some initial solutions have to be created and the dimensionality of
the solution increases as well. For fast convergence we use the best estima-
tions of the previous step complemented by some random next tasks which
did not appear in the solution vector. For example if a solution for the task
assignment of three tasks was S=[1 3 2] some possible initial solutions for
the assignment of 4 tasks based on that previous step would be S=[ 1 3 2 4],
[ 1 3 2 5], [1 3 2 6], [1 3 2 7], etc. We need to mention here that (4) can be
easily modified to handle fusion. More specifically, the first summation term
can be replaced by the associated terms for each separate stream. Another
way is to consider that this term is the result of one of the fusion methods
mentioned in Sec. 4.

7. ESN-based multi-camera approach

The ESN is a method for online time-series analysis, which does not rely
on the Markovian assumption. The hidden layer (reservoir) consists of N
randomly connected neurons. There are neurons which are connected to
cycles, so that past states “echo” in the reservoir. The neurons within the
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hidden layer are also randomly connected to the k-dimensional input signal,
which drives the network. Additionally, only output weights are adapted and
learnt, all other weights including feedback are randomly selected and stay
static.

Let ot = (o1,t, . . . , oK,t) be the input to the network at time t, where K is
the dimensionality of a feature vector. Hidden units are xt = (x1,t, . . . , xN,t),
whereN is a number of hidden states, and output units are yt = (y1,t, . . . , yL,t),
where L corresponds to number of tasks in a workflow here. Further, let
Win

N×K be the weights for the input-hidden connection, WN×N be the weights
for the hidden-hidden connections, Wback

N×L be the weights for the output-
hidden connection, and Wout

L×(K+N+L) be the weights for the read-out neu-
rons, i.e., the connection from all units to the respective read-out neu-
rons. The activation of internal and output units are updated at every time
step by: xt = f(Winot + Wxt−1 + Wbackyt−1), where f = (f1, . . . , fN)
are the hidden unit’s activation functions. The outputs are calculated as:
yt = f out(Wout[ot,xt,yt−1]), where f out = (f out

1 , . . . , f out
L ) are the output

unit’s activation functions. The term [ot,xt,yt−1] is the concatenation of the
input, hidden and previous output activation vectors.

For usage on test sequences, the trained network can be driven by new
input sequences and the output is computed as: ŷt = Woutxt.

Since the individual read-out neurons are trained independently and usu-
ally from highly unbalanced data, we propose to normalise the response with
respect to their mean responses ȳ, calculated on the training data. To iden-
tify a task for each time instance the significant maximum is taken by:

ŷt =


l? if

max
l=1,...,L+1

yt(l)− ȳ(l)

max
l′=1,...,L+1

l? 6=l′

yt(l
′)− ȳ(l′)

> θL

L+ 1 otherwise

,where l? = arg max
l=1,... L+1

yt(l)−ȳ(l)

(5)
In other words, the maximum of the L+1 outputs is considered to be signifi-
cant, if the ratio to the second highest value is above some defined threshold
θL. This threshold influences the precision of our method and set up manu-
ally by trial and error during training stage.

Regarding fusion methods feature fusion is achieved by concatenating
the scene descriptors for each camera view. As in HMM case, the obser-
vation streams either have to be synchronous or some synchronisation pro-
cedure should be applied to these streams. Then an ESN is trained using
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Figure 4: Schematic representation of the car assembly environment indicating the posi-
tions of the racks, the welding cells, and the cameras.

yt = f out(Wout[[o1
t , . . . ,o

Kn
t ],xt,yt−1]), where Kn is the number of cameras.

Parallel fusion is performed by weighted summing of the respective ESN
outputs for all streams and the result is taken as a label.

8. Experiments

To verify experimentally the applicability of the described methods in real
world, we have acquired very challenging videos from the production line of a
major automobile manufacturer2. Each day the same workflow is performed
many times in the production line. Two partially overlapping views were
used.

8.1. Experimental setup

We recorded approximately 8 hours of video from a single working cell
(including gaps between workflows and breaks). The dataset was captured
by two PTZ cameras. We recorded data at 25 fps with relative jitter bounded
by 1.6% on frame rate with resolution of 704 × 576. The workspace config-
uration and the cameras’ positioning are given in Fig. 4. According to the

2We are going to make the dataset publicly available. It is currently available for
review purposes on http://www.4shared.com/dir/sYeCqK5d/ SignalProcessingVideoAn-
alytics.html (dataset1 - password:xyz543)
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manufacturing requirements each workflow consists of the following 6 tasks,
which are not necessarily executed sequentially:

Task1: A part from Rack 1 (upper) is placed on the welding spot by worker(s).
Task2: A part from Rack 2 is placed on the welding spot by worker(s).
Task3: A part from Rack 3 is placed on the welding spot by worker(s).
Task4: Two parts from Rack 4 are placed on the welding spot by worker(s).
Task5: A part from Rack 1 (lower) is placed on the welding spot by worker(s).
Task6: A part from Rack 5 is placed on the welding spot by worker(s).

Moreover, we introduce Task7, which can be essential for continuous time-
series modelling and includes:

Task7: Any frame, where no actions from Tasks 1-6 take place (void).

The order in which the tasks are executed is not purely random: there are
loose patterns and dependencies, which are incorporated in the framework
through the approach described in Sec. 6. Given that most tasks start and
end in the welding area, it is difficult to identify, sometimes even by eye,
which task the frame belongs to at the start/end of the task. We have anno-
tated being aware that the labelling accuracy is approximately five frames.
Moreover, some tasks can have overlapping paths for a number of frames. In
addition there are tasks that bear great visual resemblance, e.g., tasks 1 and
5. In the workflow, the duration of the tasks is different, while the duration of
the same task changes from one instance to another. All of these difficulties,
together with the severe occlusions in the car assembly environment present
challenges to workflow monitoring and task recognition.

8.2. Implementation details

Here we give specific implementation details of our methods, which allow
reproduction of our results.

Motion Grid. The initial motion grid matrix was calculated for 140 patches
overlaid onto the whole image. The size of patches (local motion region) were
selected as Ω = 100 × 100 with an overlap of 0.5, i.e. 50% of each patch.
Activation motion threshold is set to θM = 250.

Prior knowledge. The human operator manually specifies the region where
the workflow instances can potentially take place including welding machine
for each camera. In fact, 65 LMCs in the top half of the image were selected
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for Camera 1 and 106 LMCs for Camera 2, which form the LMCs for each
frame. Our approach would work without this manual definition, however we
would have unrelated motion in the scene, which would require a significantly
larger training set. Furthermore, the prior knowledge acquisition concerns
learning of the pdfs p(d|t − t0), as well as of p(task(i)|task(i − 1)) for all
tasks. The learning is effected through the available training samples in each
cross validation cycle.

Classification of segmented sequences. For each of the 7 tasks a dedicated
three-state HMM with a single component per state was trained (for each
camera stream). For the mixture model representing the interstream inter-
actions in the context of the multistream fused HMM we use mixture models
of two component distributions. These experiments were conducted for the
case of individual stream HMMs, as well as feature fusion, parallel and mul-
tistream fused HMMs. In all cases we trained our models using the EM
algorithm and we used the multivariate Student’s t-distribution as observa-
tion model of the HMMs.

Sequence segmentation. A two-state HMM with six mixture components per
state was trained to model the ending of tasks (1-6), as described in Sec. 5.
Based on the statistics of the dataset, we selected the time window W , which
signifies the end of a task, to equal 50. Whenever a new task was automati-
cally segmented, it was tested in each of the six models to acquire the related
log probability, which in combination to the prior knowledge provided the
input to the genetic algorithm. Regarding task 7 (void), every time a new
task was segmented, we checked the forthcoming sequence through temporal
windows to determine whether it corresponded to the void task; this was
practically recognised when the log probability surpassed an experimentally
set threshold.

Echo State Network. We applied a plain ESN with 3, 000 hidden units, 65
inputs and 7 outputs for Camera 1 and a plain ESN with 3, 000 hidden units,
106 inputs and 7 outputs for Camera 2 to obtain single streams results. The
number of states was selected to achieve trade-off between training time and
generative properties of trained ESN based on experimental runs by changing
number of hidden states from 100 to 12000. Although increasing the number
of hidden states to 10000 can improve ESN results between 1% and 6% on
average for a given instance of workflow, the training time could be increased
by the order of two. We used the ESN toolbox written in MATLAB by H.
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Jaeger et al3. The spectral radius was |λ| = 0.98, input scaling and teacher
scaling Jaeger (2001) were chosen as 0.1 and 0.3 respectively. Furthermore,
additional noise was added to the ESN during the training process to improve
the stability. Median filtering with a filter length of 51 was performed at
post-processing stage, i.e., on predicted labels.

For feature fusion we trained ESN with 3, 500 hidden units, 171 inputs
and 7 outputs, where 171 inputs (features) consist of conconcatenation of
features for Camera 1 and Camera 2. The parallel fusion was achieved by
weighted summing of corresponding outputs of two ESNs and selecting the
output with maximum value as a label for a given frame.

8.3. Evaluation and results

In the dataset, 20 instances of workflow and their tasks were manually
labelled. Each workflow instance consists of 3, 550 to 9, 100 frames, which
correspond to 2 to 5 minutes. The LMCs were calculated in real time (20-25
fps). Four-fold cross validation was performed, with testing sets including
scenarios 1− 5, 6− 10, 11− 15 and 16− 20, while the remaining instances of
workflow each time were used for training. ESN training took approximately
15 minutes using the MATLAB implementation on a 2.83 GHz computer
running Windows Vista. However, testing could be done very efficiently
online at 20 fps. HMM training was performed in approximately two minutes
and testing of a sequence, e.g., of 1000 vectors in less than 10 sec.

For a quantitative evaluation, we used recall-precision measurements. Re-
call corresponds to the correct classification rate (number of true positives
divided by total number of positives in ground truth), whereas precision re-
lates to the trust in a classification (number of true positives divided by
number of true and false positives). The F-measure is the harmonic mean of
these two measurements.

In the following we present how both GA-HMM-based and ESN-based
approaches coped with task recognition using a single stream data from Cam-
era 1 and Camera 2 respectively and by fusing features and labels from both
views. Additionally multistream fusion was examined for the GA-HMM-
based approach.

Regarding sequence segmentation for the GA-HMM approach the results
showed that the method proposed in Sec. 5 leads to segmentation times

3http://www.reservoir-computing.org/node/129, 2009/08/05.
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Table 1: Performance of GA-HMM for all 20 testing workflow instances - Student-t dis-
tribution

Camera 1 Camera 2 Feature fusion Parallel fusion Multistream

Recall 86.0± 22.5% 89.8± 12.5% 75.5± 24.1% 89.9± 11.8% 90.3± 12.0%
Precision 85.6± 22.4% 90.0± 12.5% 74.8± 24.2% 90.0± 11.9% 90.4± 12.1%

F-measure 85.8± 22.4% 89.9± 12.5% 75.1± 24.1% 89.9± 11.8% 90.3± 12.1%

rather close to the ones in ground truth. In particular, the mean and standard
deviation values of the absolute difference (in frames) between the estimated
segmentation time and the ground truth task end time averaged across all
tasks of all testing sequences are: Camera 1: 16.8± 12.9, Camera 2: 11.5±
10.3, feature fusion: 19.1 ± 16.8, parallel fusion: 11.3 ± 10.2, multistream
fusion: 10.1± 8.1. Segmentation from Camera 2 is more successful than the
one from Camera 1, which can be explained by the formers generally better
viewpoint to the welding cell, where all task endings take place. Moreover,
multistream fusion seems to provide a small but notable improvement, by
decreasing the average absolute error in relation to ground truth to merely
10 frames.

The results shown in Table 1 indicate that the proposed GA-HMM ap-
proach using LMC features attained very good recognition rates. Camera 2’s
individual stream yielded better results than Camera 1 since the former of-
fers a generally better viewpoint. Feature fusion and parallel fusion achieved
rates lower than and roughly equal to the best single stream respectively.
The multistream fused HMM based approach provided the maximum recall,
precision and F-measure, as it succeeded in effectively capturing the inter-
dependencies between the two streams. The confusion matrices in Fig. 5
also reflect the superiority of the multistream method, but also indicate that
for tasks whose order is more statistically variant (i.e., tasks 4, 5, 6) the
recognition rates were lower.

As far as the ESN based approach is concerned, it shows significantly
better results for Camera 2 in comparison to Camera 1 (Table 2) due to
significantly lower level of occlusions. Combining these two single streams
by feature or parallel fusion allows to achieve average recall of 74.5% and
76.2% respectively with parallel fusion slightly outperforming feature fusion.

Confusion matrices (Fig. 6) indicate that the most difficult task for mon-
itoring was Task 1 with correct classification rates (CCRs) of 34.5% and
55.2% for single stream cases. Using parallel fusion allowed to increase CCR
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Table 2: Performance of ESN for all 20 testing workflow instances

Camera 1 Camera 2 Feature fusion Parallel fusion

Recall 59.3± 13% 73.5± 8.4% 74.5± 11% 76.2± 10.3%
Precision 55.6± 13% 72.8± 8.7% 74.3± 12% 76.3± 11.2%

F-measure 57.3± 13% 73.1± 8.5% 74.3± 11.5% 76.2± 10.6%

for this task to 67.9%. Although this task is well separated from manufactur-
ing requirements point of view, it is not that easy to distinguish from other
tasks using the video recordings, since it shares the same paths as other tasks
for some periods of time.

In this application GA-HMM outperformed ESN according to recall, pre-
cision and F-measures on 20 instances of workflow. This was probably due
to the fact that the GA-HMM structure makes possible to encode the task
sequences in a hierarchical fashion using application-specific prior knowledge.
On the other hand, the ESN is a general-purpose classifier, which seeks to
capture patterns in observation sequences; the prior information is captured
only implicitly and requires large number of nodes. Recently it was demon-
strated that despite the fact that ESNs are not based on the Markovian
property, in practice they are influenced more by recent states, which of
course makes the memorisation of series of past tasks quite hard (Gallicchio
and Micheli, 2011). On the contrary the GA-HMM has no such problem
because it explicitly encodes the whole task history.

9. Conclusion

In this paper we addressed the issue of online recognition of visual tasks
and workflows in complex industrial environments. To this end the employ-
ment of holistic features based on a grid time matrix so as to bypass the
challenging tasks of detection and tracking, which are usually unsuccess-
ful in such environments, leads to a very satisfactory representation. We
proposed the GA-HMM, which is a HMM endowed with a method to auto-
matically segment the input stream and to exploit prior knowledge through
a genetic algorithm. By doing so, we could take advantage of the versatile
HMM architecture, e.g., by incorporating elaborate fusion methods (Zeng
et al., 2008) or robust models (Chatzis et al., 2009) for online stream clas-
sification. We scrutinised the effectiveness of this approach and compared
it to an ESN-based approach. The GA-HMM approach outperformed ESN,
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(a) Cam 1 - GA-HMM (b) Cam 2 - GA-HMM (c) Feature fusion -
GA-HMM

(d) Parallel fusion -
GA-HMM

(e) Multistream - GA-
HMM

Figure 5: Confusion matrices in GA-HMM approach: individual camera streams, feature
fusion, parallel fusion and the multistream fused HMM (attaining the best performance).

although the latter’s performance is influenced by the topological complexity
and consequently the training time required. The ESN offers a simpler, more
straightforward approach, which can yield satisfactory results when training
time can be compromised. A plus of the ESN is the automated segmenta-
tion of sequences, while GA-HMM relies on the ability to detect the task
segments. Both approaches do not depend on the Markovian assumption to
extract the sequences of tasks. However, as was recently shown, the ESN is
practically influenced more by the most recent observations, so it is naturally
expected to have more difficulties in classifying long sequences of tasks.

Fusion of multiple camera streams provided added value in many cases.
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(a) Cam 1 - ESN (b) Cam 2 - ESN (c) Parallel - ESN

Figure 6: Confusion matrices in ESN approach - individual camera streams and the parallel
fusion scheme (attaining the best results for ESN).

Between the fusion methods employed for both GA-HMM and ESN, the par-
allel fusion method exploited more effectively the redundancies between the
different streams compared to feature fusion. The latter method assumes
strict synchronization, which is not the case in our setting. The benefits
of fusion were more apparent in the ESN, where there was bigger room for
improvement. Finally, the GA-HMM based on the multistream fused HMM
could better capture interdependencies between streams and led to the high-
est recognition rates among all approaches.

Finally, the proposed method can be easily employed in other workflows,
just by modifying accordingly the constraints of the solution given by the
genetic algorithm, e.g., by allowing repetitions of tasks, omissions etc. It is
also scalable, because the underlying fusion methods are not limited by the
number of streams.
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