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Abstract

The Student’s-t hidden Markov model (SHMM) has been recently proposed as a

robust to outliers form of conventional continuous density hidden Markov mod-

els, trained by means of the expectation-maximization algorithm. In this paper, we

derive a tractable variational Bayesian inference algorithm for this model. Our in-

novative approach provides an efficient and more robust alternative to EM-based

methods, tackling their singularity and overfitting proneness, while allowing for the

automatic determination of the optimal model size without cross-validation. We

highlight the superiority of the proposed model over the competition using synthetic

and real data. We also demonstrate the merits of our methodology in applications

from diverse research fields, such as human computer interaction, robotics and se-

mantic audio analysis.
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1 Introduction

The hidden Markov model (HMM) is increasingly being adopted in applica-

tions since it provides a convenient way of modeling observations appearing in

a sequential manner and tending to cluster or to alternate between different

possible components (subpopulations). Specifically, HMMs with continuous

observation densities have been used in a wide spectrum of applications in ecol-

ogy, encryption, image understanding, speech recognition, and machine vision

applications [1]. The hidden observation densities associated with each state

of a continuous HMM must be capable of approximating arbitrarily complex

probability density functions. Finite Gaussian mixture models (GMMs) are

the most common selection of emission distribution models in the continuous

HMM literature [2]. Their popularity stems from the well-known capability of

GMMs to successfully approximate unknown random distributions, including

distributions with multiple modes, while also providing a simple and com-

putationally efficient maximum-likelihood (ML) estimation framework using

the expectation-maximization (EM) algorithm [3]. Nevertheless, GMMs do

also suffer from a significant drawback concerning their parameters estima-

tion procedure, which is well-known to be adversely affected by the presence

of outliers in the data sets used for the model fitting.

To tackle these issues, we have proposed in [4] a novel form of continuous

HMMs where the hidden state distributions are modeled using finite mixtures

of multivariate Student’s-t densities. The multivariate Student’s-t distribu-
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tion is a bell-shaped distribution with heavier tails compared to the Gaussian;

as a consequence, Student’s-t mixture models (SMMs) provide an alternative

to GMMs means of probabilistic generative modeling with high robustness

to training data outliers. The so-obtained Student’s-t hidden Markov model

(SHMM) has been considered in [4] under the ML paradigm using the EM algo-

rithm; as it has been shown, the SHMM provides an effective, computationally

efficient and application-independent means for outlier tolerant representation

and classification of sequential data by means of continuous HMMs.

In this paper, we provide an alternative treatment of the SHMM under a

Bayesian framework using a variational approximation, yielding the varia-

tional Bayesian SHMM (VB-SHMM). Variational Bayesian treatments of sta-

tistical models present significant advantages over ML-based alternatives: ML

approaches have the undesirable property of being ill-posed since the likeli-

hood function is unbounded from above [5,6,7]. This fact results in several very

significant shortcomings. To begin with, a significant difficulty concerns the

infinities which plague the likelihood function, associated with the collapsing

of the bell-shaped component distributions onto individual data points and,

hence, resulting in singular or near-singular covariance matrices [7]. Obviously,

the adoption of a Bayesian model inference algorithm, providing posterior dis-

tributions over the model parameters instead of point-estimates, would allow

for the natural resolution of these issues [5,6,7]. Another central issue ML

treatments of generative models are confronted with concerns selection of the

optimal model size. Maximum likelihood is unable to address this issue since it

favors models of ever-increasing complexity, thus leading to over-fitting [17,10].

In our work, we conduct a Bayesian treatment of the SHMM, overcoming the

problems of ML approaches elegantly, by marginalizing over the model pa-

rameters with respect to appropriate priors. The resulting model (marginal)

likelihood can then be maximized with respect to the model size, in case one

aims at optimal model selection, or combined with a prior over the model
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size if the goal is model averaging [17,16]. Our novel approach is based on

variational approximation methods [8], which have recently emerged as a de-

terministic alternative to Markov chain Monte-Carlo (MCMC) algorithms for

doing Bayesian inference for probabilistic generative models [9,10], with bet-

ter scalability in terms of computational cost [11]. Variational Bayesian in-

ference has previously been applied to relevance vector machines [12], GMMs

[13], autoregressive models [14,15], SMMs [16,17], mixtures of factor analyzers

[18,19,20], discrete HMMs [21], Gaussian HMMs [22], as well as HMMs with

Poisson and autoregressive observation models [23], thereby ameliorating the

singularity and overfitting problems of ML approaches.

The remainder of this paper is organized as follows: In Section 2, a brief review

of the SHMM is provided. In Section 3, the proposed variational Bayesian

treatment of the SHMM is carried out, yielding the variational Bayesian

SHMM algorithm. In Section 4, the experimental evaluation of the proposed

algorithm is conducted, considering a series of data modeling and classification

applications and using real-world data sets. In the final section, our results are

summarized and discussed.

2 The Student’s-t HMM

Let us suppose an N -state HMM where the hidden emission density of each

state is modeled by a K-component finite mixture model. Considering that

the component distributions of the K-component finite mixture models mod-

eling the HMM state densities are multivariate Student’s-t distributions, the

definition of the Student’s-t HMM is obtained. The pdf of a d-dimensional

Student’s-t distribution with mean µ, precision R, and ν degrees of freedom
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is given by

t(xt|µ,R, ν) =
Γ
(
ν+d
2

)
|R|1/2(πν)−d/2

Γ (ν/2){1 + MD(xt,µ|R−1)/ν}(ν+d)/2
(1)

where MD(xt,µ|R−1) is the squared Mahalanobis distance between xt,µ with

covariance matrix (inverse precision) R−1 [24] and Γ (.) is the Gamma func-

tion.

The SHMM can be modeled by the set of parameters Ψ = {π,A,C,Θ,ν},

where π = (πi)
N
i=1 is the initial-state probability vector, A = (aij)

N
i,j=1 is the

N ×N one-step transition matrix, C = (cij)
N,K
i,j=1 is the N ×K mixture coef-

ficient matrix, with cij denoting the mixing proportion of the jth component

density of the hidden emission distribution of the ith SHMM state, Θ is the

N ×K parameter matrix that comprises the means µij and the precisions Rij

of the constituent Student’s-t densities of the model, that is Θ = (θij)
N,K
i,j=1

where θij = {µij,Rij}, and ν = (νij)
N,K
i,j=1 is the NK vector of the degrees of

freedom of the model component densities.

Let X = {xt}Tt=1 be an observed data sequence, with xt ∈ X ⊆ Rd, modeled

by an SHMM. The latent (unobserved) data associated with this sequence

comprise the corresponding state sequence S = {st}Tt=1, where st = 1, . . . , N

is the indicator of the state the tth observation is emitted from, and the

sequence of the corresponding mixture component indicators L = {lt}Tt=1 ,

where lt = 1, . . . , K indicates the mixture component density that generated

the tth observation. The likelihood of the parameters set Ψ of the SHMM

given the observable data X is, then, given by

p(X|Ψ) =
∑
S,L

πs1

[
T−1∏
t=1

astst+1

] [
T∏
t=1

cstltp(xt|θstlt , νstlt)
]

(2)

As it has been discussed in [24], there is no closed-form solution for likeli-
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hood maximization of a Student’s-t distribution. However, a computationally

elegant solution can be obtained [16,17] by exploiting the property of the

Student’s-t distribution [24]

t(xt|µ,R, ν) =

ˆ ∞
0

N (xt|µ,utR)G(ut|ν/2, ν/2)dut (3)

which implies that a Student’s-t density can be viewed as an infinite sum

of Gaussians with the same mean and scaled precisions, where the precision

scalars are Gamma-distributed latent variables depending on the degrees of

freedom of the Student’s-t density. Let us denote as U = {ustlt} the sequence

of the (latent) precision scalars associated with the observed data, depend-

ing on the corresponding unobserved state sequence and mixture component

indicator sequence. Then, we have that

xt ∼ t(µstlt ,Rstlt , νstlt) (4)

is equivalent to

xt|ustlt ∼ N (µstlt , ustltRstlt) (5)

where

p(ustlt |νstlt) = G(ustlt |νstlt/2, νstlt/2) (6)

Under this regard, and using (3), the likelihood of the SHMM (2) eventually

becomes

p(X|Ψ) =
∑
S,L

πs1

ˆ
dustlt

[
T−1∏
t=1

astst+1

] [
T∏
t=1

cstltp(xt|θstlt , ustlt)p(ustlt|νstlt)
]
(7)
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3 Variational Bayesian Inference for the SHMM

Variational Bayesian inference for the SHMM comprises introduction of a set of

prior distributions over the model parameters and further maximization of the

log marginal likelihood (log evidence) of the resulting model. For convenience,

we choose priors conjugate to the considered observable and latent data, as

this selection greatly simplifies inference and interpretability [8]. This way, the

prior for the initial-state probabilities vector is chosen to follow a Dirichlet

distribution

p(π) = D(π|φπ) = D(π1, . . . πN |φπ1 , . . . , φπN) (8)

In the same fashion, we choose

p(A) =
N∏
i=1

D(ai1, . . . , aiN |φAi1, . . . , φAiN) (9)

p(C) =
N∏
i=1

D(ci1, . . . , ciK |φCi1, . . . , φCiK) (10)

Under the equivalent expression (5) of the Student’s-t distribution, we let the

joint (conjugate exponential) prior on the means and the precisions of the

mixture component densities of the SHMM hidden states be

p({µij,Rij}N,Ki,j=1) =
N∏
i=1

K∏
j=1

NW(µij,Rij|λij,mij, ηij,Sij) (11)

where NW(µij,Rij|λij,mij, ηij,Sij) is a Normal-Wishart distribution with

hyperparameters λij,mij, ηij, and Sij. Finally, no conjugate prior exists for

the degrees of freedom νij of the model component densities. Instead, these

parameters will be estimated as model hyperparameters, by optimization as a

part of the variational inference procedure discussed next.

Having introduced prior distributions over the SHMM parameters, the for-

mulation of the variational Bayesian SHMM is complete. The graph of the
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VB-SHMM can be found in Fig. 1. Therefore, we can proceed to the estimation

of the marginal likelihood of the data. Exact inference in our Bayesian model

is intractable. Nevertheless, the choice of conjugate exponential prior distri-

butions for the model parameters allows for the derivation of an elegant varia-

tional framework. Let Ψ̃ be the set of the stochastic model variables of the VB-

SHMM, that is, the latent model variables and the model parameters on which

a conjugate exponential prior has been imposed, Ψ̃ = {S, L, U,π,A,C,Θ}.

The variational Bayesian treatment of the VB-SHMM is conducted by intro-

ducing an arbitrary distribution q(Ψ̃) = q(S, L, U,π,A,C,Θ) and considering

the well-known equality for the log evidence, logp(X) [11]

logp(X) = F (q) + KL(q||p) (12)

where

F (q) =

ˆ
dΨ̃q(Ψ̃)log

p(X, Ψ̃)

q(Ψ̃)
(13)

In (12), KL(q||p) stands for the Kullback-Leibler (KL) divergence between

the arbitrary distribution q(Ψ̃), which is considered as the approximate (vari-

ational) posterior over the model variables, and p(Ψ̃|X) which is the true

posterior over the model variables; it is given by

KL(q||p) = −
ˆ

dΨ̃q(Ψ̃)log
p(Ψ̃|X)

q(Ψ̃)
(14)

Since the KL divergence is a non-negative quantity, it follows from (12) that

F (q) is a strict lower bound of the log evidence, i.e.

logp(X) ≥ F (q) (15)

and would become exact if q(Ψ̃) = p(Ψ̃|X). Hence, maximizing the lower

bound of the log evidence (variational free energy), F (q), so that it becomes

as tight as possible, i.e. minimizing the KL divergence between the true and the

variational posterior, a good variational inference scheme for the VB-SHMM
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is obtained.

In order to yield a tractable expression for the variational free energy of the

VB-SHMM, we assume that the joint variational posterior over the stochas-

tic variables associated with the VB-SHMM, q(Ψ̃) = q(S, L, U,π,A,C,Θ),

factorizes over the latent variables and the model parameters as

q(Ψ̃) = q(S, L, U,π,A,C,Θ) ≈ q(S, L)q(U)q(π)q(A)q(C)q(Θ) (16)

where q(S, L) = q(L|S)q(S). Factorization of q(Ψ̃) on the form (16) is a com-

mon approach in variational Bayesian inference (see e.g. [16,25,21,26]). Then,

having chosen a family of approximating (variational) posterior distributions,

we can now search for the optimal member of this family by maximization

of the variational free energy, thus increasing F (q) on logp(X), the exact log

marginal likelihood.

From (13) and (16), the variational free energy, F (q), reads

F (q) =

ˆ
dSdLdUdπdAdCdΘq(S, L)q(U)q(π)q(A)q(C)q(Θ)

[
logπs1

+
T−1∑
t=1

logastst+1 +
T∑
t=1

logcstlt +
T∑
t=1

logp(xt|θstlt , ustlt)

+ logp(U |ν) + logp(π) + logp(A) + logp(C) + logp(Θ)

− logq(S, L)− logq(U)− logq(π)− logq(A)− logq(C)− logq(Θ)

]

=F (q(π)) + F (q(A)) + F (q(C)) + F (q(Θ)) + F (q(S, L)) + F (q(U))

(17)

where, the analytical expressions of the terms constituting F (q) are provided

in the Appendix. From (17), it follows that F (q) is a non-convex function

of the variational posterior distribution [27]. As a consequence, there will in

general exist multiple maxima of F (q), and, hence, the solution obtained from

the variational inference procedure will depend, indeed, on the initialization.

This issue can be easily addressed by performing multiple optimizations from
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Figure 1. Graphical representation of the VB-SHMM. {Xt}Tt=1 is the observed se-
quence. The arrows represent conditional dependencies. The plates indicate indepen-
dent copies for states i, component mixtures j, and data samples t. Some variables
are related to more than one plates. The dependency of the observed variables re-
sults from the Normal-Wishart distribution, and the variables st, st−1 represent the
current and the previous state at time t.

different random starts, and retaining the solution yielding the largest value of

the variational free energy, F (q). We note that a benefit of the upper bounded

nature of F (q), as a result of the adoption of the proposed variational Bayesian

approach, is that this optimization procedure allows us to use the entire train-

ing set in a single pass of training and does not require cross-validation, as is

the case with ML approaches (such as the EM algorithm and its derivatives)

[17], where the optimized objective function is unbounded.

3.1 Variational Posteriors

The expressions of the variational posteriors over the VB-SHMM variables can

be derived by maximizing F (q) with respect to each one of the factors of q(Ψ̃)

in turn, holding the others fixed, in an iterative manner where each iteration

resembles an EM algorithm iteration [28]; on the E-step of these iterations,

the variational posteriors over the VB-SHMM latent variables, q(S, L) and

q(U), are updated, while, on the M-step, updating of the variational posteriors

over the model parameters is conducted. At the end of each iteration, the

value of the variational free energy, F (q), is estimated and used to apply a

variational inference convergence criterion. We note that, as a consequence of
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the conjugate exponential structure of our model, the resulting optimal factors

of the variational posterior distribution, q(Ψ̃), are expected to take the same

functional form as the corresponding conditional (prior) distributions [27]. We

also mention that, by construction, the iterative, consecutive updating of the

interdependent distributions of the considered factors of q(Ψ̃) is guaranteed to

monotonically and maximally increase the variational free energy F (q) [18].

Let us denote as < χ >ξ the mean of the expression χ with respect to the

probability density function ξ. We begin with the updates of the variational

posteriors over the VB-SHMM parameters (M-step of the algorithm). From

(17), and by collecting all the quantities related to q(A) together, we have

F (q(A)) =

ˆ
dAq(A)log

∏N
i=1

∏N
j=1 a

ωA
ij−1
ij

q(A)

 (18)

where

ωAij =
T−1∑
t=1

γAijt + φAij (19)

and

γAijt , q(st = i, st+1 = j) (20)

Then, from (18) and using Gibbs inequality, maximization of F (q(A)) yields

the variational posterior

q(A) =
N∏
i=1

D(ai1, . . . , aiN |ωAi1, . . . , ωAiN) (21)

In the same fashion, we can optimize F (q) with respect to q(π) and q(C), to

obtain their expressions; this yields

q(π) = D(π1, . . . , πN |ωπ1 , . . . , ωπN) (22)

where

ωπi = γπi + φπi (23)
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γπi , q(s1 = i) (24)

and

q(C) =
N∏
i=1

D(ci1, . . . , ciK |ωCi1, . . . , ωCiK) (25)

where

ωCij =
T∑
t=1

γCijt + φCij (26)

γCijt , q(st = i, lt = j) (27)

Finally, from (17), and by collecting all the quantities related to q(Θ) together,

we have

F (q(Θ)) =

ˆ
dΘq(Θ)

ˆ
dUq(U)log

{∏N
i=1

∏K
j=1 p(θij)

∏T
t=1 [p(xt|θij, uijt)]γ

C
ijt

q(Θ)

}
(28)

where

uijt , ustlt |st = i, lt = j (29)

Using the expression of F (q(Θ)) given by (28), log evidence maximization

w.r.t. q(Θ) yields

q(Θ) =
N∏
i=1

K∏
j=1

q(θij) (30)

with

q(θij) = q(µij,Rij) = NW(µij,Rij|λ̃ij, m̃ij, η̃ij, S̃ij) (31)

where we introduce the notation

γ̃ij ,
T∑
t=1

γCijt 〈uijt〉q(uijt) (32)

x̄ij ,

∑T
t=1 γ

C
ijt 〈uijt〉q(uijt) xt

γ̃ij
(33)

∆ij ,
T∑
t=1

γCijt 〈uijt〉q(uijt) (xt − x̄ij) (xt − x̄ij)T (34)
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and, it holds

η̃ij = ηij +
T∑
t=1

γCijt (35)

S̃ij = Sij + ∆ij +
λij γ̃ij
λij + γ̃ij

(mij − x̄ij) (mij − x̄ij)T (36)

λ̃ij = λij + γ̃ij (37)

m̃ij =
λijmij + γ̃ijx̄ij

λij + γ̃ij
(38)

Let us, now, consider the expressions of the variational posteriors over the

latent model variables (E-step of the algorithm). We begin with the variational

posteriors over the precision scalars ustlt . From (17), we have

F (q(U)) =
N∑
i=1

K∑
j=1

T∑
t=1

ˆ
duijtq(uijt)

[
log

p(uijt|νij)
q(uijt)

+ γCijt

ˆ
dθijq(θij)logp(xt|θij, uijt)

] (39)

Then, maximization of F (q) with respect to q(uijt) yields

logq(uijt) ∝
(
νij
2
− 1

)
loguijt −

νij
2
uijt + γCijt

d

2
loguijt

− γCijt
1

2

[
d

λ̃ij
+ η̃ij (xt − m̃ij)

T S̃ij
−1

(xt − m̃ij)

]
uijt

(40)

and, hence,

q(U) =
N∏
i=1

K∏
j=1

T∏
t=1

q(uijt) (41)

where

q(uijt) = G(αijt, βijt) (42)

and

αijt =
νij + γCijtd

2
(43)

βijt =
1

2

{
νij + γCijt

d

λ̃ij
+ γCijtη̃ij (xt − m̃ij)

T S̃ij
−1

(xt − m̃ij)

}
(44)

Finally, concerning the joint variational posterior over the state indicator se-

quence and the mixture component indicator sequence q(S, L), from (17) we
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have

F (q(S, L)) =
∑
S,L

q(S, L)log
π∗s1

∏T−1
t=1 a

∗
stst+1

∏T
t=1 c

∗
stltp

∗(xt|θstlt , ustlt)
q(S, L)

(45)

which yields the optimizer

q(S, L) =
1

W
π∗s1

T−1∏
t=1

a∗stst+1

T∏
t=1

c∗stltp
∗(xt|θstlt , ustlt) (46)

where

π∗i , exp
[
〈logπi〉q(π)

]
(47)

a∗ij , exp
[
〈logaij〉q(A)

]
(48)

c∗ij , exp
[
〈logcij〉q(C)

]
(49)

p∗(xt|θstlt , ustlt) , exp
[
〈logp(xt|θstlt , ustlt)〉q(U),q(Θ)

]
(50)

and the normalizing constant W is given by

W =
∑
S,L

π∗s1

T−1∏
t=1

a∗stst+1

T∏
t=1

c∗stltp
∗(xt|θstlt , ustlt) (51)

Comparing the expression of the variational posterior distribution q(S, L),

given by (46), with the expression of the conditional probability p(S, L|X,Ψ)

computed in the context of the EM algorithm for the SHMM [4], we notice

that, in essence

q(S, L) = p(S, L|X,Ψ∗) (52)

where Ψ∗ = {π∗,A∗,C∗,Θ∗,ν} and Θ∗ = {θ∗ij}
N,K
i,j=1 is such that

p∗(xt|θstlt , ustlt) = p(xt|θ∗stlt) (53)

Therefore, the probabilities γAijt, γπi , and γCijt, defined in (20), (24), and (27),

respectively, that constitute the variational posterior q(S, L), can be easily

computed by means of the forward-backward algorithm, as described in [2],

by using the set of the posterior expected values Ψ∗ as the optimized values
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(“point”-estimates) of the SHMM parameters.

3.2 Hyperparameter Selection

Let us, now, deal with the proper selection of the values of the hyperparameters

of the model priors, i.e. {ν, φπi , φAij, φCij, λij,mij, ηij,Sij}N,Ki,j=1. We begin with

the degrees of freedom of the model component densities. Taking derivatives

of F (q) with respect to νij we obtain that νij is given by the solution of the

equation

log
νij
2

+1−ψ
(
νij
2

)
+

1∑T
t=1 γ

C
ijt

T∑
t=1

γCijt
(
〈loguijt〉q(uijt) − 〈uijt〉q(uijt)

)
= 0 (54)

For the rest of the prior hyperparameters of the VB-SHMM, instead of deter-

mining their optimal expression with respect to the model’s variational free

energy, we select instead a set of proper ad hoc values. This is preferable due

to the fact that the benefit from optimizing their values is not significant,

when a good ad hoc value selection can be conducted [18,17]; on the contrary,

the computational burden imposed by this procedure is significant, mainly

due to the open-form formulas required to be computed (see e.g. [18,17]). For

instance, a good selection might be obtained by setting λij = 1, mij = 0, so

as to obtain broad components over µij, and ηij = 20, Sij = 200I to allow for

more moderate components over Rij. On the other hand, concerning the hy-

perparameters of the Dirichlet priors over the Markov chain probabilities, i.e.

φπi , φ
A
ij, and φCij, interpreting them as effective numbers of prior observations,

one may set their values to φ = 10−3.
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3.3 Model Size Selection

Proper selection of the model size is a significant and generally difficult prob-

lem in the field of probabilistic generative models. In our variational Bayesian

setting, we do not impose a prior over the model size parameters, that is the

number of states, N , and the number of mixture component densities per

model state, K. Instead, the adoption of the proposed Bayesian approach al-

lows the optimal values of the number of states and of the mixture components

to be obtained by merely running the variational inference procedure for dif-

ferent values of N and K and selecting the one that yields the biggest value

of the variational free energy, F (q), since this approximates the log marginal

likelihood for the model. Note that, on the contrary, in ML approaches, us-

ing some variant of the EM algorithm, usually cross-validation techniques are

employed against an independent data set to select an appropriate model com-

plexity, a method which imposes a heavy computational burden and is also

prone to well-known over-fitting problems [7].

3.4 Approximation of the Predictive Density

Let us consider an already estimated VB-SHMM, that is an SHMM for which

the proposed variational Bayesian treatment has already been conducted. The

ultimate goal of Bayesian learning is, given a set of test data, to perform

density estimation with respect to the trained model. Let us suppose a test

sequence X ′ = {x′
t}T

′
t=1 and a VB-SHMM trained using the training sequence

X = {xt}Tt=1. To conduct density estimation, the predictive density of the test

set with respect to the trained model

p(X ′|X) =

ˆ
dΨ̃p(Ψ̃|X)p(X ′|Ψ̃) (55)
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has to be estimated. Replacing the unknown actual posterior p(Ψ̃|X) with the

variational Bayesian one, and using Jensen’s inequality, (55) reads

logq(X ′|X) =log
∑
S,L

q(S, L)

ˆ dπq(π)πs1

ˆ
dAq(A)

T ′−1∏
t=1

astst+1

ˆ
dCq(C)

×
T ′∏
t=1

cstlt

ˆ
dΘq(Θ)

ˆ
dUq(U)

T ′∏
t=1

p(x
′

t|θstlt , ustlt)


≈
∑
S,L

q(S, L)

ˆ dπq(π)logπs1 +

ˆ
dAq(A)

T ′−1∑
t=1

logastst+1

+

ˆ
dCq(C)

T ′∑
t=1

logcstlt +

ˆ
dΘq(Θ)

ˆ
dUq(U)

T ′∑
t=1

logp(x
′

t|θstlt , ustlt)


(56)

Therefore, the log predictive density for the test sequence X ′ can be approxi-

mated by

logq(X ′|X) ≈ Pred(X ′) (57)

where

Pred(X ′) =
∑
S,L

q(S, L)log
π∗s1

∏T ′−1
t=1 a∗stst+1

∏T ′

t=1 c
∗
stltp

∗(x
′
t|θstlt , ustlt)

q(S, L)
(58)

It is apparent that, similar to estimation of the q(S, L), computation Pred(X ′)

consists in merely employing the forward-backward algorithm, as described

in [2], using the set of the posterior expected values Ψ∗ as the optimized

values (“point”-estimates) of the model parameters. Note that exactly the same

procedure would be employed to obtain the likelihood of a sequence with

respect to an SHMM trained using the EM algorithm [4].

4 Experimental Evaluation

In this section, we provide a thorough experimental evaluation of the VB-

SHMM algorithm, in a series of sequential data modeling applications from
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diverse domains. Our experiments have been developed in Matlab R2008a,

and were executed on a Macintosh platform with an Intel Core 2 Duo 2 GHz

CPU, and 2 GB RAM, running Mac OS X 10.5.

4.1 Synthetic data

We begin with a toy example on simulated data, to demonstrate the no-

tion behind the use of the Student’s-t observations distribution in HMM-

based sequential data modeling, and the advantages of variational-Bayes over

expectation-maximization. The considered synthetic data was obtained by

generating five realizations of 400 samples each. In each realization, we drew

100 data points from each one of the bivariate Gaussian distributionsN (µ1,Σ1),

N (µ2,Σ2), and N (µ3,Σ3), where the parameters {µi,Σi}3i=1 are given by

µ1 = [−6 1.5], µ2 = [0 0], µ3 = [6 1.5]

Σ1 =


5 4

4 5

 ,Σ2 =


5 −4

−4 5

 ,Σ3 =


1.56 0

0 1.56


The resulting 300 simulated points were further augmented by 100 samples

drawn from a uniform distribution on the interval [−10, 10] (outliers). These

data are used to formulate a time series of multivariate observations, where

the observations at time instances t = 1 : 100 come from N (µ1,Σ1), the

observations at time instances t = 101 : 200 come from N (µ2,Σ2), the ob-

servations at time instances t = 201 : 300 come from N (µ3,Σ3), and the last

100 observations are the outliers.

Using the obtained data, we train one GHMM and one SHMM under both

the EM and the VB paradigm. The trained models comprise N = 3 states

with K = 1 mixture components per state. We emphasize that, in our ex-

18



Table 1
Simulated Experiment: Obtained Gaussian and Student’s-t models using the EM
algorithm.

Model Gaussian Student’s-t

State 1 output mean µ = [−6.07 − 2.91] µ = [−5.91 1.40]

State 2 output mean µ = [−3.21 1.78] µ = [0.23 − 0.18]

State 3 output mean µ = [5.11 0.74] µ = [6.02 1.69]

Table 2
Simulated Experiment: Obtained Gaussian and Student’s-t models using the VB
algorithm.

Model Gaussian Student’s-t

State 1 output mean m̃ = [−7.94 3.33] m̃ = [−5.96 1.49]

State 2 output mean m̃ = [−2.45 0.83] m̃ = [0.07 − 0.04]

State 3 output mean m̃ = [6.32 1.75] m̃ = [6.01 1.53]

periment, we employ a common initialization scheme for the parameters of

the EM-trained models (obtained by random selection of the Markov chain

probabilities and a run of the k-means algorithm), as well as the posterior

hyperparameters of the VB-trained models. This way, the comparison of the

evaluated algorithms is just.

In Tables 1 and 2, we provide the point estimates of the GHMM and SHMM

means obtained using the EM algorithm, and the joint mean-precision poste-

rior hyperparameter means of the GHMM and SHMM models trained using

the VB approach. As we observe, the VB algorithm obtains a much better es-

timate of the actual distributions of the modeled set of observations. Indeed,

when comparing the EM-trained models with the corresponding VB-trained

models, we notice that the VB algorithm completely outperforms EM, which

yielded a rather poor result. Furthermore, we emphasize that the proposed

VB inference algorithm for the SHMM yielded a nearly perfect result, with

the estimated mean-precision posterior hyperparameter means being almost

identical to the actual means of the modeled data distributions.
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Table 3
Simulated Experiment: Execution times of the evaluated algorithms.

Model Time (in Sec.)

VB-SHMM 26.08

VB-GHMM 25.39

EM-SHMM 8.22

EM-GHMM 8.08

(a) EM-GHMM (b) EM-SHMM

(c) VB-GHMM (d) VB-SHMM

Figure 2. Simulated Experiment: Convergence of the evaluated algorithms

In Fig. 2, we illustrate the convergence rates of the evaluated algorithms. It

is evident that all the considered algorithms converge comparably fast, in a

monotonic fashion, as theoretically expected. Finally, in Table 3, we provide a

comparison of the computational requirements of the considered algorithms.

It is apparent that training the considered models under the VB framework is

20



relatively more expensive in terms of computational requirements compared

to the EM algorithm. We note, however, that in both cases, the computation

time needed is of the same order of magnitude.

4.2 Text-dependent speaker identification under the presence of noise

Here, we evaluate our method in classification of noisy sequential data. We

consider a text-dependent speaker identification task, using the Japanese Vow-

els Data Set [29] from the UCI machine learning repository [30]. In this data

set, the pass-phrase used for speaker identification purposes comprises two

Japanese vowels, /ae/, successively uttered by nine male speakers. For each

utterance, a 12-degree linear prediction analysis is applied to obtain a discrete-

time series with 12 LPC cepstrum coefficients. Further, given the considerably

low noise level in this data set, to make the task of the evaluated models more

challenging, Gaussian noise is added to the available data. The added noise

has zero mean and diagonal covariance matrix, with the ith element defined as

σii = α·[max(xni )-min(xni )], where xni is the ith dimension of the nth training

vector and α is a noise variance factor.

There are 640 time series in total in our data set. We use a set of 270 time

series for training (30 for each speaker) and the rest 370 time series for testing.

For each one of the speakers, we train one Student’s-t HMM and one Gaussian

HMM as the classifier, using either of the considered approaches (variational

Bayes and expectation-maximization). In detail, for each speaker, first, we

run the VB-SHMM and the VB-GHMM algorithms to conveniently and de-

pendably obtain the optimal model size (number of states, N , and number of

component distributions, K) of the Student’s-t and Gaussian hidden Markov

models. The criterion for this selection is the maximization of the value of the

lower bound of the model log evidence; this is a dependable criterion for model

order selection under a Bayesian setting, as described in Section 3.3. Further,
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Table 4
Text-dependent speaker identification: Recognition error rates for optimal number
of states and mixture components (N,K are average values for all classes and α is
the noise variance factor). Maximum allowed model size (i.e., number of states ×
number of mixture components) was set equal to 200

Model VB-SHMM VB-GHMM EM-SHMM EM-GHMM

α Error rate N K Error rate N K Error rate Error rate

0 0.03 13.66 4.33 0.03 14 4.77 0.02 0.02

0.05 0.12 17.33 4.77 0.14 19.33 4.77 0.13 0.13

0.10 0.24 17.33 4.44 0.48 16.44 4.44 0.5 0.64

0.15 0.36 16.22 4.22 0.43 8.33 3.22 0.48 0.52

0.20 0.37 14.77 4 0.45 8.33 3 0.52 0.68

Table 5
Text-dependent speaker identification: Recognition error rates for maximum number
of states N = 5 (N,K are average values for all classes and α is the noise factor)

MAX N=5 VB-SHMM VB-GHMM EM-SHMM EM-GHMM

α Error rate N K Error rate N K Error rate Error rate

0 0.04 4.77 5 0.04 4.66 4.77 0.02 0.02

0.05 0.18 4.77 4.88 0.20 3.22 2.22 0.2 0.23

0.10 0.21 4.88 4.55 0.29 3 2.11 0.31 0.41

0.15 0.32 4.77 4.88 0.51 3.77 3.55 0.53 0.71

0.20 0.46 4.55 4.77 0.57 3.66 4 0.61 0.65

we use the trained VB-SHMM and VB-GHMM models to classify our test set,

thus obtaining the error rates of the models. Finally, to examine the advan-

tages of the variational Bayesian approach over maximum-likelihood, we also

train GHMM and SHMM models using the EM algorithm, with the model size

selected equal to the “optimal” model size as determined by the VB algorithm

for the corresponding models. The obtained results are illustrated in Table 4.

Further, we repeat the above experiment by limiting the maximum number

of model states N . This experimental setting allows for the comparison of

Gaussian and Student’s-t models with approximately equal demands in com-
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Table 6
Text-dependent speaker identification: Recognition error rates for maximum number
of states N = 10 (N,K are average values for all classes and α is the noise factor)

MAX N=10 VB-SHMM VB-GHMM EM-SHMM EM-GHMM

α Error rate N K Error rate N K Error rate Error rate

0 0.04 8.88 4.77 0.03 8.44 5 0.02 0.02

0.05 0.16 9.88 4.88 0.21 8.22 4.11 0.21 0.32

0.10 0.28 9.66 5 0.29 2.55 2.77 0.3 0.41

0.15 0.35 9.66 5 0.45 5.22 3.77 0.49 0.57

0.20 0.45 9.22 4.77 0.54 7.22 3.55 0.61 0.65

Table 7
Text-dependent speaker identification: Recognition error rates for maximum number
of states N = 15 (N,K are average values for all classes and α is the noise factor)

MAX N=15 VB-SHMM VB-GHMM EM-SHMM EM-GHMM

α Error rate N K Error rate N K Error rate Error rate

0 0.03 11.2 4.77 0.03 12.88 4.88 0.02 0.02

0.05 0.12 14 4.77 0.13 14.77 5 0.11 0.11

0.10 0.29 14.22 4.55 0.36 10.44 3.88 0.38 0.50

0.15 0.34 12.55 4.77 0.37 6.88 3.11 0.41 0.59

0.20 0.35 12.22 4.66 0.51 7.66 3.77 0.55 0.56

Table 8
Text-dependent speaker identification: Mean execution times of the evaluated algo-
rithms for optimal model sizes

Model Time (in Sec.)

EM-SHMM 21.13

EM-GHMM 20.07

VB-SHMM 307.60

VB-GHMM 302.01

putational resources for their application, while also providing a relative flex-

ibility in choosing a proper model size, within the set limit, which describes

the training data in the best way. The results for MAX N = 5, 10, 15 are given

in Tables 5, 6, and 7, correspondingly. In the same tables, apart from the VB-
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trained models, we also present for reference purposes the results obtained by

the EM-trained models.

From the provided results, it is obvious that the VB-SHMM constantly out-

performs the VB-GHMM, while both models perform much better than the

corresponding EM-trained models, especially for higher noise variances α. For

all methods, as the number N increases from N = 5 to N = 15, the per-

formance is also enhanced, while letting free the values of N , the effect of

overfitting becomes evident. This is especially true for the EM-trained mod-

els, as theoretically expected; notice, however, that a similar phenomenon was

also witnessed for the VB algorithms, to a much lesser extent whatsoever. It is

also obvious that, as the noise increases, the performance of the VB-GHMM is

significantly affected. This is not the case for the VB-SHMM, which maintains

its representation capabilities and appears to have higher tolerance to noise.

Finally, in Table 8 we provide the mean algorithm execution times for optimal

model sizes.

4.3 Semantic Characterization of Audio Scenes Based on Content

The significance of audio content in the semantic characterization of multime-

dia has recently motivated the development of various techniques for content-

based scene classification in audio signals. Audio streams, in general, contain

a lot of artifacts and outliers, that cannot be easily eliminated by a potential

model training sample. Furthermore, to allow for the effective semantic clas-

sification of audio data, usually a large number of audio features has to be

extracted, thus increasing significantly the dimension of the formulated fea-

ture space over which classification or categorization algorithms are carried

out. These open issues motivate the application of the VB-SHMM in audio

scene classification based on content.
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The data set used to carry out our tests consists 487, 20 min. audio sam-

ples extracted by several movie genres. Each sample has been divided into

semantically coherent audio segments (scenes), and a groundtruth semantic

classification has been assigned to each one of these scenes by human experts;

we consider 5 semantic classes of audio scene content: music, speech, gunshots,

fights, and screams. Each audio scene is represented by a 8-dimensional feature

vector comprising each segment’s

• spectral rolloff median (SRM);

• zero crossing rate (ZCR), measuring the number of time-domain zero cross-

ings, divided by the frame’s length;

• two spectrogram features, the standard deviation and the maximum value

of the means obtained over the spectrogram windows;

• a chroma feature [33], expressing the deviation between the obtained chroma

coefficients of each segment;

• spectral rolloff [32];

• energy entropy; and

• pitch.

Our experimental setup is the following: We divide our data set into two

subsets, one comprising 50 sequences which we use as our training set, and

one comprising 437 sequences, used as our test set. Similar to the previous

experiment, we contaminate the original data sets with additive Gaussian

noise of various variances, in order to make the sequence segmentation task

even more demanding for the evaluated models.

We train one EM-GHMM, one VB-GHMM, one EM-SHMM, and one VB-

SHMM comprising 5 states, to model the 5 considered semantic classes of audio

content. Afterwards, each one of the available test sequences is presented to

the trained CHMMs, and the Viterbi algorithm is employed to attribute each

sample segment to the “most probable” model state. This way, the semantic
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Table 9
Semantic Characterization of Audio Scenes Based on Content: Sequence segmenta-
tion error rates obtained by the evaluated algorithms for α = 0.

Model EM-GHMM EM-SHMM VB-GHMM VB-SHMM

K = 5 0.5249 0.5172 0.5295 0.4025

K = 6 0.5497 0.5144 0.5236 0.409

K = 7 0.5249 0.5190 0.5263 0.4152

K = 8 0.5428 0.5213 0.5195 0.3856

K = 9 0.5299 0.5195 0.5274 0.4251

K = 10 0.5684 0.5199 0.5249 0.3992

classifications of the available test segments, as determined by each evaluated

model, are obtained. Finally, these results are compared to the groundtruth

sequence segmentations, and the error rates of the considered methods are

calculated. To ensure the objective comparison of the evaluated methods, our

experiment is repeated 50 times, each time using different random starts for

the evaluated model training algorithms.

The obtained results for a noise variance factor α equal to 0, 0.05 and 0.10

are given in Tables 9, 10, and 11, respectively. As we observe, the variational

methods clearly outperform the point estimators especially when the noise

levels become higher. Additionally, the proposed variational method based on

the Student’s-t distribution is the ultimate winner in all the considered cases.

This verifies again the merits of our approach. Finally, in Table 12 we provide

the mean algorithm execution times for optimal model sizes.

4.4 Detection of robotic task execution failures

In this experiment, we verify the applicability of our methodology using data

from the field of robotics. More specifically, we use five datasets to classify

types of failures during the execution of robotic tasks using sequential data

from a force/torque sensor. We consider benchmark datasets from the UCI
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Table 10
Semantic Characterization of Audio Scenes Based on Content: Sequence segmenta-
tion error rates obtained by the evaluated algorithms for α = 0.05.

Model EM-GHMM EM-SHMM VB-GHMM VB-SHMM

K = 5 0.7565 0.7217 0.6110 0.4987

K = 6 0.7098 0.6966 0.5936 0.4810

K = 7 0.7172 0.7135 0.6169 0.5098

K = 8 0.7140 0.6902 0.6110 0.4983

K = 9 0.6531 0.6700 0.6064 0.4980

K = 10 0.7254 0.7080 0.6041 0.4992

Table 11
Semantic Characterization of Audio Scenes Based on Content: Sequence segmenta-
tion error rates obtained by the evaluated algorithms for α = 0.1.

Model EM-GHMM EM-SHMM VB-GHMM VB-SHMM

K = 5 0.7597 0.7355 0.6604 0.5328

K = 6 0.7455 0.7368 0.6499 0.5233

K = 7 0.7597 0.7469 0.6581 0.5273

K = 8 0.7245 0.7240 0.6577 0.5289

K = 9 0.6929 0.7053 0.6458 0.5186

K = 10 0.7629 0.7299 0.6371 0.5100

Table 12
Semantic Characterization of Audio Scenes Based on Content: Mean execution times
of the evaluated algorithms for optimal model sizes

Model Time (in Sec.)

VB-SHMM 21.13

VB-GHMM 20.07

EM-SHMM 8.69

EM-GHMM 3.25

repository [30], previously used in [34] in a similar experimental context. Each

of the five datasets define a different learning problem; the considered problems

comprise:
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(1) failures in approach to grasp position (normal, collision, front collision,

obstruction);

(2) failures in transfer of a part (normal, front collision, back collision, colli-

sion to the right, collision to the left);

(3) position of part after a transfer failure (normal, slightly moved, moved,

lost);

(4) failures in approach to ungrasp position (normal, collision, obstruction);

(5) failures in motion with part (normal, bottom collision, bottom obstruc-

tion, collision in part, collision in tool).

Each feature in the considered datasets represents a force or a torque measured

after failure detection; each failure instance is characterized in terms of 15

force/torque samples collected at regular time intervals starting immediately

after failure detection. The total observation window for each failure instance

was of 315 ms, and each sequence contains six feature vectors.

The five datasets contain 88, 47, 47, 117 and 164 samples correspondingly [30].

From each dataset we have used the first five samples for training and the rest

for testing, except for dataset 2, where only the first three samples were used,

due to the limited availability of samples. To model each one of the described

classes, HMMs with two states and a single-component distribution were fit-

ted, using both the commonplace EM approaches, as well as the variational

Bayesian approach for Gaussian and Student’s-t models.

The overall accuracy results are displayed in Table 13, where the best obtain-

able performance for each of the aforementioned methods is reported. It is ap-

parent that the VB-SHMM outperforms its rivals. As this experiment makes

more than evident, the derivation of posterior distributions over the model

parameters instead of point estimators offers clear advantages when only few

training samples are available. Additionally, the employment of Student’s-

t observation models offers a lot in alleviating the effect of outliers on the

28



Table 13
Detection of robotic task execution failures: total error rates for each of the five
classification tasks

EM-GHMM EM-SHMM VB-GHMM VB-SHMM

dataset 1 43.29 43.29 43.29 8.96

dataset 2 56.25 56.25 50.00 25.00

dataset 3 44.83 27.59 24.14 10.34

dataset 4 48.04 48.04 42.16 36.27

dataset 5 50.36 50.36 51.08 41.73

Table 14
Detection of robotic task execution failures: Mean execution times of the evaluated
algorithms for optimal model sizes

Model Time (in Sec.)

EM-SHMM 0.76

EM-GHMM 0.76

VB-SHMM 1.47

VB-GHMM 1.62

trained models. Finally, in Table 14 we provide the mean algorithm execu-

tion times for optimal model sizes. As we observe, in cases of clearly limited

availability in training samples, the extra computational burden imposed by

the variational Bayesian methodologies is clearly insignificant compared to the

enhanced pattern recognition effectiveness they allow for.

5 Discussion

Hidden Markov models are a well-established technique for sequential data

modeling and classification. Typically, HMMs with continuous observation

distributions employ Gaussian mixture models as their hidden state densities.

Nevertheless, this selection might considerably undermine the HMM perfor-

mance when noise contaminates the training data, due to the well-known in-

tolerance of GMMs to outliers. To mitigate this shortcoming, the replacement

29



of Gaussian mixture models with finite mixture models of the heavy-tailed

Student’s-t distribution has been recently proposed as a promising solution;

the resulting Student’s-t HMM has been treated under a maximum-likelihood

framework using the EM algorithm [4].

In this paper, we proposed a Bayesian treatment of the SHMM using a vari-

ational approximation. The so-obtained, VB-SHMM, provides significant ad-

vantages over possible alternative maximum-likelihood-based regards of the

SHMM model using the EM algorithm and its variations, as the objective

function optimized by the VB-SHMM inference algorithm is bounded from

above, contrary to the ill-posed construction of the EM algorithm. This in-

teresting property of the proposed VB-SHMM model makes it a favorable se-

lection in many practical applications, where only limited training data sets,

contaminated with outliers and noise, are obtainable.

Our experimental results provide strong evidence towards the efficacy of the

VB-SHMM approach, and its increased effectiveness in sequential data model-

ing and classification applications. As we have shown, the VB-SHMM outper-

forms EM-based approaches, as well as the VB-GHMMmethod, in a number of

demanding applications entailing modeling of noisy sequential data. We have

seen that these strengths of the proposed model become even more apparent

when reducing the availability of training data in the same application (see,

e.g., sections 4.2 and 4.4); this is totally expectable, since the provision of pos-

terior densities over the model parameters allows for a much better modeling

of the hidden dynamics of the modeled datasets when limited training samples

are available, compared to the point-estimates the EM algorithm yields [9,10].

An additional merit of our method concerns optimal model size determina-

tion for an HMM fitted to a given dataset. ML has a clear difficulty in model

selection, due to the unbounded nature of the objective function it employs.

On the contrary, our variational Bayesian approach does not suffer from such
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problems, thus allowing for the effective and efficient conduction of the model

selection procedure by merely maximizing the model marginal likelihood with

respect to the model size. Model selection under our approach was extensively

studied in the experimental section of our paper. Indeed, we employed our

approach to obtain the sizes of all trained models, while we also experimented

with setting a low upper limit on the desired model sizes (see, e.g., section 4.2),

to study how the algorithm performs under such constrained environments.

As we noticed, constraining the desired model size below what our algorithm

obtains when no constraint is imposed yields clearly underperforming mod-

els, thus providing conspicuous indication that our model selection approach

does not exhibit any proneness to favoring too big models, as we theoretically

expected.

Concerning the computational complexities of the competing algorithms, as we

have observed, VB inference requires in general more computational time than

the EM algorithm. However, as already mentioned, the VB algorithm is most

useful for problems with limited labeled data availability, since, in this case,

the point model estimates provided by ML are inadequate for representing the

uncertainty associated with the true posterior. Furthermore, when only small

training data sets are available, while ML is faster than VB, both are very

fast. Hence, for the case of limited labeled data and/or unknown model size,

for which VB is most important, the proposed VB-SHMM is the method of

choice. If large volumes of labeled data are available, and the desired model

size is already known, an ML solution is adequate, and VB may be avoided if

desired.
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Appendix

We have

F (q(A)) =
∑
S

q(S)
T−1∑
t=1

〈
logastst+1

〉
q(A)

+ 〈logp(A)〉q(A) − 〈logq(A)〉q(A) (59)

where

〈logp(A)〉q(A) =
N∑
i=1

logΓ

 N∑
j=1

φAij

+
N∑
j=1

[
(φAij − 1) 〈logaij〉q(A) − logΓ (φAij)

]
(60)

〈logq(A)〉q(A) =
N∑
i=1

logΓ

 N∑
j=1

ωAij

+
N∑
j=1

[
(ωAij − 1) 〈logaij〉q(A) − logΓ (ωAij)

]
(61)

〈logaij〉q(A) = ψ(ωAij)− ψ

 N∑
j=1

ωAij

 (62)

and ψ() is the digamma function. Similar, it holds

F (q(π)) =
∑
S

q(S) 〈logπs1〉q(π) + 〈logp(π)〉q(π) − 〈logq(π)〉q(π) (63)

where

〈logp(π)〉q(π) = logΓ

(
N∑
i=1

φπi

)
+

N∑
i=1

[
(φπi − 1) 〈logπi〉q(π) − logΓ (φπi )

]
(64)

〈logq(π)〉q(π) = logΓ

(
N∑
i=1

ωπi

)
+

N∑
i=1

[
(ωπi − 1) 〈logπi〉q(π) − logΓ (ωπi )

]
(65)

〈logπi〉q(π) = ψ(ωπi )− ψ
(

N∑
i=1

ωπi

)
(66)

and

F (q(C)) =
∑
S,L

q(S, L)
T∑
t=1

〈logcstlt〉q(C) + 〈logp(C)〉q(C) − 〈logq(C)〉q(C) (67)
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where

〈logp(C)〉q(C) =
N∑
i=1

logΓ

 K∑
j=1

φCij

+
K∑
j=1

[
(φCij − 1) 〈logcij〉q(C) − logΓ (φCij)

]
(68)

〈logq(C)〉q(C) =
N∑
i=1

logΓ

 K∑
j=1

ωCij

+
K∑
j=1

[
(ωCij − 1) 〈logcij〉q(C) − logΓ (ωCij)

]
(69)

〈logcij〉q(C) = ψ(ωCij)− ψ

 K∑
j=1

ωCij

 (70)

Concerning the term F (q(Θ)), we have

F (q(Θ)) =
∑
S,L

q(S, L)
T∑
t=1

〈logp(xt|θstlt , ustlt)〉q(U),q(Θ) + 〈logp(Θ)〉q(Θ) − 〈logq(Θ)〉q(Θ)

(71)

where

〈logp(xt|θij, uijt)〉q(U),q(Θ) =− d

2
log2π +

1

2
〈log |Rij|〉q(Θ) +

d

2
〈loguijt〉q(U)

−
〈uijt〉q(U)

2

[〈(
xt − µij

)T
Rij

(
xt − µij

)〉
q(Θ)

]
(72)

〈(
xt − µij

)T
Rij

(
xt − µij

)〉
q(Θ)

=
d

λ̃ij
+ η̃ij (xt − m̃ij)

T S̃ij
−1

(xt − m̃ij)

(73)

〈log |Rij|〉q(Θ) = −log

∣∣∣∣∣S̃ij2

∣∣∣∣∣+
d∑

k=1

ψ

(
η̃ij + 1− k

2

)
(74)

〈uijt〉q(U) =
αij
βijt

(75)

〈loguijt〉q(U) = ψ (αij)− logβijt (76)

〈logp(Θ)〉q(Θ) =
N∑
i=1

K∑
j=1

〈logp(θij)〉q(Θ) (77)

〈logq(Θ)〉q(Θ) =
N∑
i=1

K∑
j=1

〈logq(θij)〉q(Θ) (78)
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〈logp(θij)〉q(Θ) =− logZ(ηij,Sij)−
d

2
log2π +

d

2
logλij

− η̃ijλij
2

(m̃ij −mij)
T S̃ij

−1
(m̃ij −mij)−

λijd

2λ̃ij

+
ηij − d

2

[
−log

∣∣∣∣∣S̃ij2

∣∣∣∣∣+
d∑

k=1

ψ

(
η̃ij + 1− k

2

)]
− η̃ij

2
tr
[
Sij

(
S̃ij

)−1]
(79)

〈logq(θij)〉q(Θ) =− logZ(η̃ij, S̃ij)−
d

2
log2π +

d

2
logλ̃ij −

η̃ijd

2
− d

2

+
η̃ij − d

2

[
−log

∣∣∣∣∣S̃ij2

∣∣∣∣∣+
d∑

k=1

ψ

(
η̃ij + 1− k

2

)] (80)

Z(ηij,Sij) = πd(d−1)/4
∣∣∣∣∣Sij2

∣∣∣∣∣
−ηij/2 d∏

k=1

Γ

(
ηij + 1− k

2

)
(81)

Finally, regarding the term F (q(U)), it holds

F (q(U)) =
N∑
i=1

K∑
j=1

T∑
t=1

[
〈logp(uijt|νij)〉q(uijt) − 〈logq(uijt)〉q(uijt) + γCijt 〈logp(xt|θij, uijt)〉q(θij)

]

(82)

where

〈logp(uijt|νij)〉q(uijt) =
νij
2

log
νij
2
−logΓ

(
νij
2

)
+
(
νij
2
− 1

)
〈loguijt〉q(uijt)−

νij
2
〈uijt〉q(uijt)

(83)

〈logq(uijt)〉q(uijt) = (αij−1) 〈loguijt〉q(uijt)+αijlogβijt−βijt 〈uijt〉q(uijt)−logΓ (αij)

(84)

〈uijt〉q(uijt) =
αij
βijt

(85)

〈loguijt〉q(uijt) = ψ(αij)− logβijt (86)
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