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ABSTRACT
A framework employing the Student-t pdf is introduced for
offline map estimation and robot localization using visual
loop closures. The framework uses the Student-t pdf (a) as
an observation model of a Hidden Markov Model to repre-
sent a topological map (b) to represent the robot motion
model. The map and the motion model are calculated in
an expectation maximization (EM) framework. We show
that the estimator converges at linear time and that the
provided accuracy is higher compared to using a conven-
tional Gaussian mixture pdf, due to higher noise resiliency,
as well as compared to using a fixed robot motion model.
The task is assisted by unsupervised landmark definition
through the EM-based clustering of the observations and by
scene representation using the complex Zernike moments,
which provide rich rotation-invariant information. The va-
lidity of the method has been verified experimentally using
the input from an omnidirectional camera.

Categories and Subject Descriptors
Artificial Intelligence [Computer Vision]: Computer Vi-
sion Tasks—Vision for robotics; Machine Learning [Machine
learning approaches]: Learning in probabilistic graphical
models— Maximum likelihood modeling

Keywords
Hidden Markov Model, Expectation Maximization, Zernike
Moments

1. INTRODUCTION
Map acquisition for mobile robots is a research field rapidly

gaining momentum over the last few years. This is mainly
due to the fundamental applications of maps in autonomous
robot navigation and specifically in mission and path plan-
ning as well as in localization. Such robotic tasks are critical
in applications such as assistive robots for sensitive social
groups (e.g., elderly, patients, etc), see for example [15], [5].
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As pointed out by researchers the problem of mapping and
localization is a sort of chicken and egg problem. To deter-
mine the location of observed objects the robot must know
where it is and to determine where it is it must know the lo-
cation of the observed objects. Therefore the two problems
are typically treated simultaneously (Simultaneous Localiza-
tion And Mapping - SLAM).

In this work we investigate the applicability of the Student-
t pdf towards solving a SLAM problem using an offline
method. The Student-t pdf has an advantage compared to
the conventional Gaussian pdf, due to its higher noise re-
siliency. Here we employ it to calculate a map after the tour
is finished, so that the same measurements can be revisited
to obtain incrementally the best possible map.

We exploit the loop closures to calculate the map and the
robot position simultaneously with the robot motion model,
which may lead to high position accuracy. The implementa-
tion associates the visual input and the odometric data in an
expectation maximization framework. The task is assisted
by unsupervised landmark definition and by scene represen-
tation using the complex Zernike moments, which provide
rich rotation-invariant information.

The rest of this work is organized as follows. In the next
section we present the related work to highlight the utility
of the proposed method. In section 5 we present the core of
our learning framework. Section 4 introduces the proposed
method for scene representation. In section 6 we present the
experimental results and section 7 concludes this work.

2. RELATED WORK
The problem of SLAM has attracted many researchers in

the past. It was initially theoretically approached by [10]
and [21], which gave the foundations for the statistical pro-
cessing of the landmarks. It was shown later that the estima-
tion about the landmarks are correlated due to the common
systematic error in the position estimation of the robot [22].
This correlation is actually exploitable to solve the problem.

Very popular are the filter-based methods. Some of the
initial approaches used the extended Kalman filter to track
maps. Examples of such methods are given in [9] and [13].
Other more advanced methods employ particle filters, which
make less assumptions about the linearity and the noise
model. Such methods are the FastSLAM [17], as well as
the DP-SLAM [11]. These methods are executed online. At
each moment in time, online methods can use all data, up to
that moment in time. In other words, they are not ”allowed”
to see into the future. An obvious problem of those methods
is the map dimensionality, which may undermine real time



performance.
Another class of methods is the offline map estimation. In

contrast to online methods, the offline ones have the possi-
bility to consider all measurements at any time, which al-
lows re-estimation of a map until a good solution is found.
Characteristic approaches are given in [25], [24]. Due to the
offline nature of these methods the real time execution is not
a strict requirement and thus the high dimensionality is not
prohibitive. The application presented here belongs to this
class.

The topological maps represent the environment as a graph;
the nodes represent specific landmarks which may have a se-
mantic meaning, e.g., door, pathway etc. The edges of the
graph describe the transition between the landmarks. The
utility of the topological maps stems from their ability to
represent semantic concepts and are therefore often used in
a complementary fashion to a metric map see, e.g., [12], [26].
Topological maps can be learned after extracting a metric
map (e.g., [23]) or directly (e.g., [20]), which is more effi-
cient and does not require the existence of a metric map.
We follow the latter approach.

The topological map graph can be well represented by a
hidden Markov model (HMM). This has been exploited in
[20] and [12]. The states of the HMM represent the nodes
of the graph and the edges are represented by the transition
probabilities. In these works the observations (sensor read-
ings) are represented by Gaussian mixture models (GMMs).
However, such models are rather sensitive to noise. In our
recent work we have demonstrated that it is possible to sub-
stitute the GMMs with Student-t mixture models (SMMs)
and thus endow the HMM with high tolerance to noise [7],
[6]. This is very important for SLAM applications, where
high amount of noise is expected due to imperfections in
the data acquisition procedure, as well as due to dynamic
environments.

In our experiments we rely on the detection of loop clo-
sures, which has been used in the past for accurate estima-
tion of topological maps (see e.g., [2], [14] ). By loop closure
detection we mean the problem of correctly asserting that
a robot has returned to a previously visited area. Here we
detect loop closures and we exploit them to estimate both
the topological map and the robot motion model simultane-
ously.

The idea of incorporating the robot motion model in or-
der to extract a map more accurately has been highlighted
in [20], where an enhanced HMM includes the odometric re-
lations between the states. This work differs from [20] in
that we define the states differently by using orientation-
invariant features extracted from omnidirectional images.
This way each location is associated with only one state,
which is closer to human perception. Moreover, we do not
explicitly model the transitions between the states using an
odometry model, on the contrary we have a single model for
the whole robot path. This is a result of the different state
definition, but also is simpler to learn.

The problem of place recognition is closely related to this
approach. Typical visual cues that are employed in litera-
ture are either holistic like the color histogram [3] or based
on local features like the SIFT see, e.g., [28], [4]. Here we
use holistic features, namely the Zernike moments, however
the proposed framework is not limited by the loop closure
detection method. Therefore other approaches such as the
bag-of-words (see e.g., [8]) can also be applied.

A side product of using HMMs to represent a map is the
clustering into states/landmarks, through training. The idea
of unsupervised learning to represent places of similar ap-
pearance has been successfully employed in previous works
see, e.g., [28].

Considering the above mentioned work, we implemented
for the purposes of our experiments a testbed similar to [24]
but with several additional features, which include, (a) the
definition of landmarks in an unsupervised way, (b) the use
of an adaptive robot motion model and (c) the exploita-
tion of loop closures to correct the odometry error. How-
ever, the main motivation behind this research was not just
to improve that method, but rather to use its paradigm to
demonstrate the utility of Student-t based models in SLAM
applications and their superiority compared to the Gaussian
approaches. This can have impact on SLAM applications
that employ HMMs to build a map or that employ a prob-
abilistic model to represent the odometry errors.

3. DEFINITIONS
In this section we describe and justify the tools that we use

for the map probability calculation, for the dynamic model
and the nodes.

3.1 Map probability
In the following similarly to [24] we are going to present

the learning framework for offline mapping, i.e., after the
robot has already finished with the mapping tour. The data
available for mapping is of the form

d = {o1, u1, ..., uT−1, oT } (1)

where ot and ut denote the observation and the robot con-
trol command in time t respectively. Here the problem of
mapping boils down to finding the most likely map m̂ given
the data according to:

m̂ = arg max p(m|d) (2)

or equivalently according to (3) [24] (see next page). As
stated in the same work the calculation is computation-
ally challenging because finding the most likely map involves
search in the space of all maps and integrating over all pos-
sible locations at all points in time.

3.2 Robot motion model
Here we propose to additionally include in (3) the robot

motion model, or equivalently a model for the odometry
error, which may provide some additional accuracy in the
calculations. Due to wheel slippage and measurement error
in rotation and distance between wheels, there is systematic
and non systematic error in the estimation of position using
odometry.

Assuming small intervals between two position estima-
tions the robot motion model, which associates the current
pose with the previous one and the control command can be
represented by a mixture of probability density functions, as
follows:

p(xt|ut−1, xt−1) =

k∑
i=1

cip(µei − xt + xt−1 + ut−1,Σei) (4)



m̂ = arg max
m

∫
...

∫ T∏
t=1

p(ot|m,xt)
T−1∏
t=1

p(xt+1|ut, xt)dx1...dxT (3)

ci > 0,
k∑
i=1

ci = 1 (5)

where xt is the position in time t, k the number of compo-
nents; µei, Σei are the mean and covariance of the error for
the i-th mixture component and ci the component priors.
By using the appropriate number of components, depend-
ing on the specific environment, it is possible to model both
systematic and non systematic errors.

Here we propose to use as pdf in the mixture in (4) the
Student-t. The Student-t distribution with mean vector µ,
positive definite inner product matrix Σ, and ν degrees of
freedom is given by:

p(yt;µ,Σ, ν) =
Γ
(
ν+p
2

)
|Σ|−1/2(πν)−p/2

Γ(ν/2){1 + d(yt, µ; Σ)/ν}(ν+p)/2
(6)

where p is the dimensionality of yt, d is the squared Maha-
lanobis distance between yt, and µ with covariance matrix
Σ, and Γ(s) is the Gamma function. The Gaussian pdf is
the specific case of a Student-t with ν=∞. As demonstrated
in fig. 1 the Student-t pdf has heavier tails and therefore is
able to incorporate outliers instead of being corrupted by
them.

Figure 1: The Student-t distribution for various ν
values. For ν → ∞ we yield the Gaussian distribu-
tion.

3.3 Topology description through an HMM
For the representation of a topological map we use here

the HMM, which is a popular framework for modeling time
series. Here we use its capability to separate the observation
from the states.

An HMM consists of states, transitions, observations and
probabilistic behavior, and is formally defined as a tuple
λ = 〈Q,O,A,B, π, 〉 satisfying the following conditions:

• Q = {q1, ..., qN} is a finite set of N states.

• O = {o1, ...; oT } is a finite set of T possible observation
values.

• A is the transition matrix, which represents the tran-
sition probabilities between states.

• B is the observation matrix, which represents the ob-
servation probability given the state.

• π represents the probability of each state at the begin-
ning of the sequence.

More specifically the states qt are considered to be the la-
bels that describe some typical views that can be observed
through the sensors in time t, e.g., pathways, junctions,
doors etc. In big buildings it is very common that some
views are repeated and this justifies having a set of land-
marks that cover all possible semantic descriptions. All the
nodes of a topological map, can be described by such labels-
states. The transition probabilities between the states of the
HMM are actually the probabilities to go from one label to
another.

The observations ot extracted from the sensor readings at
time t represent the visible landmarks, and will be further
explained in section 4. Here we propose a Student-t mixture
model to represent the observations at each HMM state.

The probability of being in state i in time step t is given
by the following:

p(qt = i|O, λ) =
aht(i)βht(i)
N∑
i=1

aht(i)βht(i)

≡ γt(i) (7)

where aht, βht are the forward and backward variables of
the HMM, which are calculated in a dynamic programming
fashion during training [18] and are given by:

aht(i) = p(o1, ...ot, qt = i|λ) (8)

βht(i) = p(ot+1, ...oT , qt = i|λ) (9)

Given that we have associated each state with a landmark,
actually the equation (7) calculated the probability of seeing
the landmark i in time t given the HMM and the observation
sequence.

4. LANDMARK REPRESENTATION AND LOOP
CLOSURE DETECTION

By detecting loop closure we aim to assert that a robot
has returned to a previously visited area. This assertion has
to be independent of robot orientation, i.e., only the position
should be considered. To this end omnidirectional vision is
an attractive option. The visual observations (landmarks)
should be therefore described by vectors which are not af-
fected by orientation variations. These observations can be
used in the following for the definition of a topological map.

The complex Zernike moments lend themselves as an at-
tractive representation option, especially for circular image
regions such as those provided by omnidirectional vision [16].
They are invariant to rotation and have some interesting
properties such us noise resilience, lack of information re-
dundancy due to their orthogonality and high reconstruction
capability.



We should not here that the proposed framework is not
limited by the use of the Zernike moments to represent vi-
sual landmarks. Other methods such as bag-of-words [8] or
Fourier signatures are applicable as well.

The complex Zernike moments of order p are defined on
an image f as:

Apq =
p+ 1

π

∫ 1

0

∫ π

−π
Rpq(r)e

−jqθf(r, θ)rdrdθ (10)

where r =
√
x2 + y2, and θ = tan−1(y/x) and −1 < x, y <

1 (x,y are the transformed image coordinates, with respect
to the image center) and:

Rpq(r) =

p−q
2∑
s=0

(−1)s
(p− s)!

s!( p+q
2
− s)!( p−q

2
− s)!

rp−2s (11)

where p − q = even and 0 ≤ q ≤ p. Moments of low order
hold the coarse information while the ones of higher order
hold the fine details. However, the more detailed the re-
gion representation is, the more processing power will be
required, and thus a trade-off has to be reached considering
the specific application requirements.

The loop closures detection is crucial for the unsupervised
estimation of a topological map. The loop closures are de-
tected simply as the locations where the distance between
two vectors is very low according to the representation that
we have selected in the previous section. For this purpose
we have used the Euclidean distance and as possible loop
closures we select the locations with very small mutual dis-
tance. Since there are many such locations in a local neigh-
borhood we select the vectors that present a local minimum.
We have seen experimentally that the behavior of the error
is locally linear provided that the frame rate is relatively
high and the robot does not move too fast. The threshold
is experimentally defined by observing several actual loop
closure cases.

An issue about the loop closure detection is what happens
when the environment is quite similar in two very different
locations (i.e., two very similarly looking offices). This will
generally result in the false detection of a loop closure. In-
tegrating some upper bound to the average odometry error
can most of the times resovle that in case that the similar
looking places are in very different locations.

5. LEARNING FRAMEWORK
As soon as a loop closure is detected, we can assume that

the initial and the final position practically coincide. In the
following we demonstrate how to use this information to
learn efficiently a map using an expectation-maximization
EM framework, based on the definitions in the previous sec-
tions. The training of a Student-t HMM can be found in our
previous work [7].

5.1 E-step
The probability of being in xt given the observation/control

sequence and given the current map can be efficiently calcu-
lated by [24]:

p(xt|d,m) = n·p(xt|o1, ..., ut−1, ot,m)︸ ︷︷ ︸
a(xt)

· p(xt|ut, ..., uT−1, oT )︸ ︷︷ ︸
β(xt)

(12)

where a(xt),β(xt), are computed separately; the former is
computed forward in time and the latter is computed back-
wards in time as given in the following formulas:

a(x1) = p(x1|o1,m) =

{
1 if x1 = (u0, v0)
0 if x1 6= (u0, v0)

(13)

a(xt) = n · p(ot|xt,m)

∫
p(xt|ut−1, xt−1) · a(xt−1)dxt−1

(14)

β(xt) =

∫
p(xt+1|ut, xt)p(ot+1|xt+1,m)β(xt+1)dxt+1 (15)

β(xT ) =

{
1 if xT = (u0, v0)
0 if xT 6= (u0, v0)

(16)

where (v0, u0) is the initial robot position, at the beginning
of the loop, which coincides with the robot position after
closing the loop.

The expected position of the robot in time step t is calcu-
lated by:

E(xt) = n

∫
xtp(xt|d,m)dxt (17)

where n is a normalizing constant.
We observe that in time t the expected odometry error et

is given by:

et = E(xt)− E(xt−1)− ut−1 (18)

5.2 M-step
In the maximization step we compute the most likely map

based on the probabilities computed in the E-step. Given
the factors α(xt), β(xt) from eq. (13) - (16), the proba-
bility γt(i) of being in state i in time t given by eq. (7)
and the probability p(ot|qt = i) of the observation given the
landmark (obtained from the automatically calculated state
model of the HMM described in sub-section 3.3) we propose
to calculate the following probabilities.

The probability that in position X the landmark is of type
i given the HMM λ will be:

p(qt = i|X,λ) =

T∑
t=1

γt(i)·a(xt = X) · β(xt = X)

T∑
t=1

a(xt = X) · β(xt = X)

(19)

The probability that we will observe ot when we are in
position X:

p(ot|X,m) =
∑
i

p(ot|qt = i)p(qt = i|X,λ) (20)

Furthermore, we propose to model the pdf of the et is
modeled using a standard Student-t mixture model using
the results from the eq. (18). The enhanced error model is
actually the probability p(xt+1|ut, xt), which is subsequently
used in equations (14), (15).

The Student-t mixture parameters can be estimated us-
ing a standard expectation maximization approach (see e.g.,
[1]).



(a)

(b)

Figure 2: 2D map of the home environment where
the data was recorded. (a) With dark color the
ground truth path and with light color the per-
ceived through odometry (b) The extracted clusters
of landmarks denoted by markers of different colors
and shapes

6. EXPERIMENTS
We have evaluated the proposed method experimentally

using a publicly available dataset. More specifically we used
the dataset produced by the project COGNIRON [27]. The
acquisition of the data set took place in a home environ-
ment, see fig.2. The mobile robot was driven around by
tele-operation to collect the data. The following sensors were
used:

• Omnidirectional camera using a camera with a hyper-
bolic mirror. The image resolution was 1024× 768.

• A SICK-laser scanner (LMS-200) was used to record
range scans at the front of the robot. The scanner
was running in millimeter precision, 0.5 degree angular
resolution over 180 degrees and had approximately 8
meter maximum range.

• Odometry. On average 12 odometry measurements per
second were taken.

The main goal in our experiments was to prove that the
proposed model has higher tolerance to noise than the con-
ventional Gaussian approach. We also verified:

• the convergence of the iterative method

• the accuracy of the produced map

• the ability to represent the observations

The observation vectors were composed of the norms of
the complex Zernike moments, which were selected due to
their rotational invariance. The order of the moments used
was up to 17, yielding vectors of size 90. We downscaled
the original images to 307 × 230 for higher efficiency. The
circular integration was calculated starting from a radius of
80 pixels up to a radius of 105 pixels. That way we removed
the circular disk in the image center which provided a con-
stant view due to camera configuration and thus no useful
information. That choice provided an acceptable reconstruc-
tion of the omnidirectional images. See for example fig.3 for
some sample reconstructions using the proposed represen-
tation. Noise from blurred images as well as from people
moving around was naturally expected to produce outliers
and to corrupt the observations.

We have selected N=21 states (nodes) to train the HMM
using the BIC criterion [19]. The observations that looked
similar were naturally clustered around neighboring posi-
tions. This becomes obvious by observing the fig.2b. Each
cluster of observations can be replaced by a node in a topo-
logical map (e.g., the mean or medoid of the observation
vectors belonging to the cluster).

Figure 3: Representation using the Zernike mo-
ments. Sample image reconstructions using mo-
ments of 17th order provide rough yet discriminative
approximations

We were able to detect automatically about 50% of the
loop closures without false positives simply by using the fea-
ture vector distance as described in section 4. Other tech-
niques (e.g., [8], [2]) can be combined with this framework
to detect more loop closures, avoiding at the same time false
positives that could corrupt the produced map.

We examined the framework with regard to its conver-
gence properties and its accuracy compared to ground truth.
For this purpose we utilized the measurements obtained by
the laser range scanner, which is the most accurate measure
available in the COGNIRON dataset. The accuracy was
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Figure 4: Typical loop cases demonstrating convergence and accuracy of the proposed Student-t based model,
of the conventional Gaussian as well as the constant motion model. The constant model in several cases failed
to converge. The error is calculated from (21) and the measurement units correspond to cell distance in the
grid.

indicated by the following measure which had to become
ideally zero:

d =

T∑
t=1

D(it, jt) (21)

where D is the distance-transformed image of the ground-
truth path on the cell map and it, jt are the coordinates
of the cell where the robot is estimated to be in time t.
Typical examples of convergence for loops in the dataset
are presented in fig.4 after maximum ten cycles (the im-
pression did not significantly change for more iterations).
We also added a small gaussian error (µ=[-0.001, 0.001],
Σ=diag(0.001,0.001) ) in the odometry estimation as well
as gaussian noise to the observation vectors to make the
estimation problem more challenging.

We compared the approach using the Student-t mixture
model for the HMM and the motion model, with the re-
spective one using the Gaussian mixture model. We also
included a method which does not adaptively learn the mo-
tion model, like in [24], however here the landmarks were
computed automatically; the motion model was kept con-
stant and was equal to the initial estimation for our adaptive
model.

Clearly the Student-t based method outperformed the Gaussian-
based and both outperformed the constant model. The lat-
ter gave results that were far from truth, very often worse
than the initial odometry estimation and in many cases
failed to converge. A typical estimation procedure for these
approaches is briefly presented in Fig.5.

The proposed method depends on the accurate loop clo-

sure detection, however we noted that in cases of big error
the estimation could not converge. Setting upper bounds
to the motion model values helps eliminationg those cases.
Also grid quantization errors contribute to overall error.

In our implementation, all probabilities were represented
by discrete grids. To increase efficiency we have stored the
motion model p(xt+1|ut, xt) in a look-up-table and we have
exploited symmetry. We have also stored the a(xt), β(xt)
into sparse arrays to save memory. The error calculation was
not performed in every step but after traveling for a constant
distance R=0.08 measurement units and the error as well as
the observations were interpolated. The size of the grid was
adapted for every loop to achieve an acceptable resolution
that was much higher than R. Typical grid sizes were of
5000-20000 cells. Calculations for such sizes and T ranging
from approximately 50 to 150 cycles ranged from one to ten
minutes, in a standard PC using MATLAB, which can be
considered acceptable for offline operation.

7. CONCLUSIONS
We have demonstrated the utility of incorporating a ro-

bust pdf model by applying it on a framework for detecting
and exploiting loop closures to calculate a topological map.

In the presented setup a HMM assisted the map creation
through a SLAM approach in two main ways: in clustering
the observations into landmarks and in defining what would
be observed given the current position. The spatial position
was calculated by employing the EM algorithm in combina-
tion with forward and backward variables. The estimator
converged in reasonable time and the complexity was linear
to the map size and to the number of observations.



(a)

(b)
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Figure 5: Typical case of iterative trajectory calcu-
lation after loop closure detection for the case of (a)
Student-t model and (b) Gaussian model. Third,
fifth and tenth (final) iteration are displayed. In (c)
is the ground truth.

We proposed the employment of the Student-t mixtures to
represent the observation probabilities of the HMM. We saw
that this choice gave higher position accuracy compared to
a Gaussian mixture. This was due to outliers coming mainly
from the camera blurring due to rapid motion and due to
people moving in the scene during the acquisition. Such
outliers were able to corrupt the Gaussian models, without
however so serious effects on the respective Student-t mod-
els. We also modeled the odometry error using a mixture of
the Student-t and here similar observations apply.

The presented work is expected to have impact on SLAM
applications that employ HMMs to build maps in noisy envi-
ronments, or which employ probabilistic models to represent
the odometry error. We will investigate how similar ideas
can be applied to online map estimation.
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