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Abstract. Partially Observable Markov Decision Processes (POMDPs)
have been met with great success in planning domains where agents must
balance actions that provide knowledge and actions that provide reward.
Recently, nonparametric Bayesian methods have been successfully ap-
plied to POMDPs to obviate the need of a priori knowledge of the size
of the state space, allowing to assume that the number of visited states
may grow as the agent explores its environment. These approaches rely
on the assumption that the agent’s environment remains stationary; how-
ever, in real-world scenarios the environment may change over time. In
this work, we aim to address this inadequacy by introducing a dynamic
nonparametric Bayesian POMDP model that both allows for automatic
inference of the (distributional) representations of POMDP states, and
for capturing non-stationarity in the modeled environments. Formulation
of our method is based on imposition of a suitable dynamic hierarchical
Dirichlet process (dHDP) prior over state transitions. We derive efficient
algorithms for model inference and action planning. We evaluate our
approach on several benchmark tasks and compare its performance to
existing alternatives.

1 Introduction

Reinforcement learning in partially observable domains is a challenging and at-
tractive research area in machine learning. One of the most common repre-
sentations used for partially-observable reinforcement learning is the partially
observable Markov decision process (POMDP). POMDPs are statistical models
postulating that emission of the observation ot that an agent receives from the
environment at time t follows a distribution Ω(ot|st, at) that depends on the
value of some latent (hidden) world-state st, and the agent’s most recent action
at. In addition, each action at of the agent results in a reward R(st, at) emitted
from the environment, the value of which also depends on the current state st,
and induces a change in the latent state of the environment, which transitions to
a new state st+1, drawn from a transition distribution T (st+1|st, at). Due to the
generic nature of their assumptions, POMDPs have been successfully applied to
a large number of reinforcement learning scenarios with great success [13].

A significant drawback of POMDPs is the large number of parameters en-
tailed from the postulated emission distribution models Ω(o|s, a), state transi-
tion distribution models T (s′|s, a), and reward models R(s, a). These parameters
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must be learned using data obtained through interaction of the agent with its
environment, in an online fashion. However, the combination of the very limited
availability of training data with the large number of parameters of the fitted
models typically results in highly uncertain trained models, where planning be-
comes extremely computationally cumbersome. Bayesian reinforcement learning
approaches [9,7,10] resolve these issues by accounting for both uncertainty in
the agent’s model of the environment, and uncertainty within the environment
itself. This is effected by maintaining distributions over both the parameters of
the POMDP and the latent states of the world s.

A drawback of most Bayesian approaches is their requirement of a priori

provision of the number of model states: even if the size of the state-space is
actually known (which is seldom the case), performing learning for a large num-
ber of unknown model parameters from the beginning of the learning process
(when no data is actually available) might result in poor model estimates and
heavy overfitting proneness. Recently, [3] proposed leveraging the strengths of
Bayesian nonparametrics, specifically hierarchical Dirichlet process (HDP) pri-
ors [15], to resolve these issues. The so-obtained infinite POMDP (iPOMDP)
postulates an infinite number of states, conceived as abstract entities whose sole
function is to render the dynamics of the system Markovian, instead of actual
physical aspects of the system. Despite the assumption of infinite model states
though, at each iteration of the model learning algorithm, only a small number
of (actually visited) effective states need to be instantiated with parameters. As
such, the model can be initialized with only few parameters which may increase
as the agent accumulates experiences through interaction with its environment.

Despite these advances, a significant drawback of existing nonparametric
Bayesian formulations of POMDPs consists in their lack of appropriate mecha-
nisms allowing for capturing non-stationarity in the modeled environments, ex-
pressed in the form of time-adaptive underlying state transition distributions. In-
deed, the problem of capturing time-varying underlying distributions in conven-
tional POMDP model formulations has been considered by various researchers
in the recent literature (e.g., [16,5]). In this work, we address this inadequacy by
introducing a non-stationary variant of the iPOMDP. Formulation of our model
is based on imposition of the dynamic hierarchical Dirichlet process (dHDP)
prior [8] over the postulated state transitions in the context of our model. We
derive efficient model inference and action planning algorithms, and evaluate the
efficacy of our approach considering a set of well-known benchmark tasks.

The remainder of this paper is organized as follows: In Section 2, we introduce
our proposed model, and derive its learning and action selection algorithms. In
Section 3, we provide the experimental evaluation of our approach, and compare
it to state-of-the-art alternatives. Finally, in the last section we summarize our
results and conclude this paper.
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2 Proposed Approach

2.1 Motivation

The iPOMDP model is based on utilization of an HDP prior to describe the
state transition dynamics in the modeled environments. The HDP is a model
that allows for linking a set of group-specific Dirichlet processes, learning the
model components jointly across multiple groups. Specifically, let us assume C

latent model states, and A possible actions; let us consider that each possi-
ble state-action pair (s, a) defines a different scenario in the environment. The
iPOMDP model, being an HDP-based model, postulates that the new state of
the environment (after an action is taken) is drawn from a distribution with
different parameters θsa, which are in turn drawn from scenario-specific Dirich-
let processes. In addition, the base distribution of the scenario-specific Dirichlet
processes is taken as a common underlying Dirichlet process. Under this con-
struction, the following generative model is obtained

s′|s, a ∼ T (θs,a) (1)

θ
s,a ∼ Gs,a (2)

Gs,a ∼ DP(α,G0) (3)

G0 ∼ DP(γ,H) (4)

As we observe, in the context of the HDP, different state transitions that
refer to the same state-action pair (scenario) share the same parameters (atoms)
that comprise Gs,a. In addition, transitions might also share parameters (atoms)
across different state-action pairs, probably with different mixing probabilities
for each Gs,a; this is a consequence of the fact that the Dirichlet processes Gs,a

pertaining to all the modeled state-action pairs share a common base measure
G0, which is also a discrete distribution.

Although the HDP introduces a dependency structure over the modeled sce-
narios, it does not account for the fact that, when it comes to modeling of
sequential data, especially data the distribution of which changes over time,
sharing of underlying atoms from the Dirichlet processes is more probable in
proximal time points. Recently, [8] developed a dynamic variant of the HDP
that allows for such a modeling capacity, namely the dynamic HDP (dHDP).
Therefore, utilization of this prior emerges as a promising solution to effect our
goals. On this basis, we formulate our model as discussed next.

2.2 Model formulation

To introduce our model, we have to provide our prior assumptions regarding
the state transition distributions, observation emission distributions, and reward
emission distributions of our model. Let us begin with the state transition distri-
butions of our model. As we have already discussed, to capture non-stationarity,
we model state transitions using the dHDP prior [8].
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Let us introduce the notation π
s,a
τ = (πs,a

τl )
∞

l=1
. πs,a

τl denotes the (prior) prob-
ability of transitioning at some time point t to state l from state s by taking
action a, given that the distributions of the various state transitions at that time
point are the same as they were at time τ = φt. In other words, the employed
dHDP assumes that the dynamics of state transition may change over time, with
different time points sharing common transition dynamics patterns. Specifically,
following [8], we have

st+1 = k|st = s, at = a ∼ Mult(πs,a
φt

) (5)

π
s,a
τ ∼ DP(α,G0) (6)

and
G0 ∼ DP(γ,H) (7)

whence

π
s,a
tl = π̃

s,a
tl

l−1
∏

h=1

(1− π̃
s,a
th ) (8)

π̃
s,a
tl ∼ Beta(αtβl, αt(1−

l
∑

m=1

βm)) (9)

βk = ̟k

k−1
∏

q=1

(1 −̟q) (10)

and
̟k ∼ Beta(1, γ) (11)

In the above equations, the latent variables φt are indicators of state-transition
distribution sharing over time. Following [8], their prior distributions take the
form

φt|w̃ ∼ Mult(wt) (12)

with wt = (wtl)
t
l=1

, and

wtl = w̃l−1

t−1
∏

m=l

(1 − w̃m), l = 1, . . . , t (13)

while w̃0 = 1, and
w̃t|at, bt ∼ Beta(w̃t|at, bt), t ≥ 1 (14)

As observed from (13), this construction induces a proximity-inclined transition
dynamics sharing scheme; that is, wt1 < wt2 < · · · < wtt. In other words, it
favors sharing the same dynamics between proximal time points, thus enforcing
our assumptions of transition dynamics evolving over time in a coherent fashion.

Finally, our observation emission distributions are taken in the form Ω(o|s, a) ∼
H , and our reward emission distributions yield R(r|s, a) ∼ HR. The distribu-
tions H and HR can have any form, with the choice depending on the application
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at hand. In this paper, we shall be considering discrete reward and action distri-
butions; as such, a suitable conjugate selection for these priors is the Dirichlet
distribution.

This concludes the formulation of our model. We dub our model the infinite
dynamic POMDP (iDPOMDP) model.

2.3 Inference algorithm

To efficiently perform inference for our model, we combine alternative applica-
tion of a variant of the block Gibbs sampler of [4], and importance sampling
[14], in a fashion similar to the iPOMDP model [3]. Our block Gibbs sampler
allows for drawing samples from the true posterior. However, we limit ourselves
to using our block Gibbs sampler only on a periodical basis, and not at each time
point. In the meanwhile, we use instead an importance sampling algorithm, which
merely reweighs the already drawn samples so as to reflect the current posterior
as closely as possible. This way, we obtain a significant speedup of our infer-
ence algorithm, without compromising model accuracy, since the actual model
posterior is not expected to undergo large changes over short time windows.

Block Gibbs sampler To make inference tractable, we use a truncated ex-
pression of the stick-breaking representation of the underlying shared Dirichlet
process of our model, G0 [12]. In other words, we set a truncation threshold C,
and consider πs,a

t = (πs,a
tl )Cl=1

, ∀t, s, a [4]. A large value of C allows for obtaining
a good approximation of the infinite underlying process, since in practice the
π
s,a
tl are expected to diminish quickly with increasing l, ∀t [4]. Note also that,

as discussed in [8], drawing one sample from the dHDP model by means of the
block Gibbs sampler takes similar time as drawing one sample from HDP.

Let us consider a a time horizon T steps long. We begin with the expression
of the conditional distribution of w̃t; we have

p(w̃t| . . . ) = Beta(w̃t|a+

T
∑

j=t+1

nj,t+1, b+

T
∑

j=t+1

t
∑

h=1

njh) (15)

where nth is the number of time points such that φt = h. Similar, the conditional
posterior of π̃s,a

tl , l = 1, . . . , C, yields

p(π̃s,a
tl | . . . ) = Beta

(

π̃
s,a
tl |αtβl +

T
∑

j=1

I(njt 6= 0)I(νs,ajl 6= 0),

αt(1 −

l
∑

m=1

βm) +

C
∑

k=l+1

T
∑

j=1

I(njt 6= 0)I(νs,ajk 6= 0)

)

(16)

where ν
s,a
tk is the number of past experiences where we had a transition from

state s to state k, by taking action a at time t.
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The updates of the set of indicator variables φt can be obtained by generating
samples from multinomial distributions with entries of the form

p(φt = τ |st−1 = s, at−1 = a; . . . ) ∝w̃τ−1

t−1
∏

m=τ

(1− w̃m)π̃s,a
τst

st−1
∏

q=1

(1− π̃s,a
τq )

×p(ot+1|st, at) p(rt+1|st, at), τ = 1, . . . , t
(17)

Further, the posterior distribution over the latent model states yields

p(st = k|st−1 = s, at−1 = a; . . . ) ∝ π̃
s,a
φtk

k−1
∏

q=1

(1− π̃
s,a
φtq

)p(ot+1|st, at) p(rt+1|st, at)

(18)
As we observe, this expression entails Markovian dynamics. Thus, to sample from
it, we have to resort to some method suitable for sampling from distributions
with temporal interdependencies. In our work, we employ the forward filtering-
backward sampling (FFBS) algorithm [1]; this way, we obtain samples of the
underlying latent state sequences.

Finally, the observation and reward distributions in our model are sampled
in a manner similar to the original iPOMDP model [3].

Importance sampling At time points when we substitute block Gibbs sam-
pling from the true posterior with importance sampling, we essentially reweigh
the samples previously drawn from the true posterior. Initially, all samples have
equal weight as they are drawn from the true posterior; this changes when we
apply importance sampling, in an effort to capture small changes in the ac-
tual posterior in a computationally efficient manner (possible within short time-
windows).

Let us denote as µ a sample of our model with weight wt(µ) at time t (all
samples have initial weights equal to one). Similar to the iPOMDP model, the
weight update at time t+ 1 yields [3]

wt+1(µ) ∝ wt(µ)
∑

∀st

Ω(ot+1|st,at)bµ(st) (19)

where bµ(s) is the belief (posterior probability) for state s, as determined in the
sample µ of the model.

2.4 Action selection

Once we have obtained a set of samples from the posterior distribution of our
model, we can use them to perform action selection. For this purpose, in this
work we apply stochastic forward search in the model-space, as proposed in [3].
The main concept of forward search is to use a forward-looking tree to compute
action-values [11]. Starting from the current posterior (belief) over the model pa-
rameters of the agent, the tree branches on each action the agent might take and
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each observation the agent might see. At each action node, the agent computes
the (posterior) expectation of the immediate reward, given the drawn samples,
in a standard Monte Carlo-type fashion.

3 Experimental Evaluation

We evaluate our method in several benchmark scenarios and compare its per-
formance to related alternatives, namely Medusa [5] and iPOMDP. Medusa is
provided with the true number of states, while iPOMDP determines it automat-
ically, similar to our approach. The first benchmark scenario considered here,
namely Tiger-3, is adopted from [3]; it comprises an environment that changes
over time, thus allowing for us to evaluate the capacity of our model to adapt
to new situations. The rest of our considered benchmarks are well-known prob-
lems in the POMDP literature, namely, Tiger [6], Shuttle [2], Network [6], and
Gridworld [6].

In our experiments, tests had 200 episodes of learning, which interleaved
acting and resampling models, and 100 episodes of testing with the models fixed.
Our results are provided in Table 1. As we observe, our approach is capable of
inferring a smaller number of states than the true count, only retaining states
for which adequate information can be derived from the accrued experiences;
this is attained without any compromises in the yielded accumulated rewards
in all scenarios. Given the fact that, as discussed in Section 2.3, drawing one
sample from the dHDP by means of the block Gibbs sampler takes similar time
as drawing one sample from the HDP, we deduce that our approach allows
for obtaining improved total reward compared to the iPOMDP for decreased
model complexity. Note also that the obtained performance improvement is more
prominent in the case of the Tiger-3 problem, where the environment changes
over time, thus posing greater learning challenges to the postulated agents. This
finding vouches for the capacity of our model to capture non-stationarities in
the modeled environments, which is the ultimate goal of this work.

Table 1. Experimental Evaluation: Number of inferred states and total obtained re-
ward.

#States Total Reward

Problem Actual iPOMDP iDPOMDP Medusa iPOMDP iDPOMDP

Tiger-3 4 4.1 3.8 -40.26 -42.07 -35.19

Tiger 2 2.1 2.1 0.83 4.06 4.64

Shuttle 8 2.1 2.1 10 10 10

Network 7 4.36 4.07 6671 6508 6749

Gridworld 26 7.36 6.82 -49 -13 -12
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4 Conclusions

In this paper, we proposed a nonparametric Bayesian formulation of POMDPs
that addressed the problem of capturing non-stationarities in the modeled envi-
ronments. Formulation of our model was based on the imposition of a suitable
dynamic prior over the state transitions of our model, namely the dHDP prior.
We devised efficient learning and planning algorithms for our model, based on
a combination of block Gibbs sampling and importance sampling. We evaluated
our method considering a set of benchmark tasks, and compared its perfor-
mance to related alternatives, namely Medusa and iPOMDP. As we observed,
our method obtains improved total rewards for smaller model sizes, thus com-
bining increased performance with better computational complexity.
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