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Abstract

A method for local estimation through training of the feature Jacobian for un-
calibrated closed-loop robot manipulator control is presented, which can handle
non-gaussian outliers due to illumination changes. This is achieved through the em-
ployment of a robust estimator. The method is experimentally validated through a
sunroof fitting robot in a closed loop control scheme.
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1 Introduction

The integration of visual sensors in robotic systems can be very beneficial for
large scale industrial production, due to the high precision that can be achieved
with vision (e.g., [1], [2]). A popular scheme for visual servo-controlled robotic
systems is the dynamic look and move; the related systems can be divided to
position-based or image-based [3] [4].

In the position-based systems the manipulator is regulated after calculation of
the end-effector pose in the workspace coordinates; the extracted features from
the image are used for fitting a geometric model of the target (and sometimes
of the end-effector) to estimate the relative pose of the target with respect to
the end-effector. This method requires camera calibration with respect to the
robot.

The image-based systems use directly the image features space to find the
desired end-effector pose by comparing the current visual features with the
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visual features observed when the end-effector has its desired pose. The lat-
ter method although less intuitive, is in many cases preferable. It eliminates
some drawbacks of the position-based approach and namely the need for the
computationally complex depth estimation and for the time-consuming, and
very often inaccurate, sensor calibration.

Although it is known that the position-based methods perform generally better
when the displacement from the goal is large, the image-based techniques are
more precise for small errors [5], [6] and therefore, the image-based techniques
are more appropriate for structured production lines with relatively small
perturbations. It is possible to combine the advantages of each method by
dynamically switching between them, based on proximity to target [6]. Other
approaches adopt hybrid state vectors composed by both 2-D and 3-D visual
measurements, referred to as 2.5-D visual servoing [7]. The reader can find
a detailed discussion on hybrid methods in [8]. Such methods are obviously
expected to benefit from improvements in the two basic approaches.

As for the image-based servoing systems, their main characteristic is that they
directly associate the pose error of the end-effector with an image Jacobian ma-
trix; this matrix models the variation of selected image features (on the target
or the end-effector) with respect to the difference of the current end-effector
pose from its nominal pose. By solving the inverse problem it is possible from
the differences in the image feature vector to calculate the desired end-effector
pose. An overview of the control scheme is presented in Figure 1.

Several works following the image-based approach have been presented in the
past such as [9] and [10]. However, in those and other similar works the pre-
sented Jacobian matrices actually depend on the depth information, thus min-
imizing the benefits of the image-based approach, as has been pointed out in
[11]. Although this dependence is not a problem for planar workspaces with
constant depth, (e.g., [9]), it introduces additional overhead in workspaces
where the depth may vary. The reader is referred to [5] for a detailed discus-
sion on this issue.

Further to the above works in [12] uncalibrated visual servoing for static tar-
gets using fixed cameras was presented. In [13] has improved the control
scheme to eye-in-hand stereo tracking of moving targets using static refer-
ence points to estimate the target motion, through the real-time estimation of
Jacobian matrix. In [14] the Jacobian matrix estimation was expanded with
convergence analysis. In [15] the positioning of a 6-DOF robot camera with
respect to a target object is handled assuming affine perspective transforma-
tion. However, in these works perfect feature extraction is assumed, which is
not the case in many realistic environments, where outliers can cause control
failures. The instability due to outliers can be a major conern when installing
cameras in industrial environments.
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Recently efforts have been made towards approaches that do not require a-
priori model of the target such as in [16], [17]. However, in a structured indus-
trial environment the types of objects to be manipulated are usually known
in advance and the overhead of learning offline their models is considered
worthwhile, especially when high accuracy is required.

In this work we present a method for local calculation of the image Jacobian
through training without the need for depth estimation, thus exploiting to
the full extend the advantages of image-based visual servoing. The proposed
method is robust to outliers, thus handles the inevitable imperfections from
image processing mainly due to illumination variations, e.g., welding sparks.
The approach can be easily applied in semi-structured environments, such
as in production lines, where relatively small, nevertheless critical, deviations
from the end-effector nominal pose may occur.

The rest of the paper is organized as follows: the next section describes the
context of using the image Jacobian for visual servoing tasks; section 3 provides
the details for the calculation of the image Jacobian in the subspace where
the robot executes the visually controlled task; section 4 provides experimental
results for a sunroof fitting prototype robotic installation that utilizes visual
feedback and the paper concludes with section 6.

Fig. 1. Image based dynamic ”look and move” system. δsx is the end-effector-pose
correction vector, which is the result of subtracting the measured feature vector f̂
from the desired features vector fd.

2 Uncalibrated image-based visual servoing

The control task in the case of uncalibrated image-based visual servoing is
described in Figure 1. The features extracted from the camera image are the
variables of an error function, which depends on the relative pose of the de-
picted objects to the camera. Making this error function zero is actually equiv-
alent to achieving the desired task. Generally this function is non-linear and
cross-coupled, which means that the motion along one degree of freedom of the
robot will result in a complex motion of many features in the image. However,
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in a small workspace this function can be approximated in a linear fashion
through the use of the image features Jacobian matrix. Similarly to ([3]) this
can be formalized in the following.

A task in the m-dimensional feature space can be described by an error func-
tion:

E(Ce(
wxe),Ct(

wxt)) : Ce × Ct → �d (1)

where Ce, Ct, the end-effector and target workspaces correspondingly ( Ce ∈
Ce, Ct ∈ Ct, d ≤ m), d the workspace dimensionality and wxe,

wxt the end-
effector (robot tool) and target (object to be handled) pose vectors in the
world coordinate system (in general by the term axb we will denote the relative
pose vector of the coordinate system attached to body b with respect to the
coordinate system attached to body a). The end-effector has the desired pose
when E(wxe,

wxt)=0.

Let us define an image error function:

e : Fe × Ft → �d (2)

where Fe, Ft the image features spaces belonging to the end-effector and to
the target which result from projection of Ce, Ct to the camera plane. The e
is equivalent to an error function in the d-dimensional workspace (d ≤ m) if:

E(Ce(
wxe), Ct(

wxt)) = 0 ⇔ e(fe(
cxe), ft(

cxt)) = 0 (3)

for all fe ∈ Fe, ft ∈ Ft, except for some singularity points (cxe,
c xt the end-

effector and the target pose vectors in the camera coordinate system corre-
spondingly).

The association of e with differential changes of the end-effector pose is done
assuming linearity through the Jacobian matrix J given by the equation:

e(fe, ft) = J(ext) · δext (4)

where δext is the end-effector pose error and J is defined as:

J(ext) =
∂e(fe, ft)

∂ext

(5)

where ext is the pose vector of the target in the end-effector coordinate system.
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The current pose error δext is used for correcting the pose of the end-effector.
Given e(fe, ft), it is calculated by:

δext = J+e(fe, ft) (6)

In the above equation J+ is the generalized inverse of J and is given by:

J+ =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

JT · (J · JT ), d > m

(JT · J)−1 · JT , d < m

J−1, d = m

(7)

As an example, in the case that the cameras are mounted on the manipulator
and only the target is monitored (fe = 0) the J is given by [9]) :

J =

⎡
⎢⎣

αxf
f−czi

0 αxfcxi

(f−czi)2
αxfcxi

cyi

(f−czi)2
αxf

f−czi
(czi −

cx2
i

f−czi
) −αxfcyi

f−czi

0 αyf
f−czi

αyfcyi

(f−czi)2
αyf

f−czi
(−czi +

cy2
i

f−czi
) −αyfcxi

cyi

(f−czi)2
−αyfcxi

f−czi

⎤
⎥⎦(8)

where cxi,
cyi,

czi are the coordinates of a target point in the camera coordinate
system, αx, αy the image scaling factors in x and y direction and f the camera
focal length. Obviously there is dependence on the relative position of the
camera to the target as well as on the camera parameters αx, αy. This requires
calculation of 3D position and camera calibration, which partially cancels
the advantages of the image-based approach; alternatively a CAD model of
the target can be used, which however, when available, could lead to rather
complex optimization problems [9].

In the following we propose an outlier-tolerant training method for building a
model of the end-effector pose with respect to image-features in order to exe-
cute a visual servoing task. Assuming operation in a small workspace volume
we do not need to estimate the depth, and we do not need sensor calibra-
tion. Thus the method maintains all the advantages of a pure image-based
approach.

3 Jacobian matrix estimation

For many industrial applications the workcell is rather well-structured with
relatively small tolerances and the manipulated target may appear within a
relatively small volume. The center of this volume is usually as the nominal
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target pose, where the positioning error is zero; the size of this volume is
defined by the target tolerances in position and orientation.

For small volumes of interest it is reasonable to assume that the Jacobian
matrix remains constant and therefore it can be calculated through an offline
training procedure. The task execution after the training does not require a-
priori knowledge of the relative pose between sensor and target. The robotic
system can be trained for execution of several robotic tasks thus acquiring
the knowledge of how to execute them. This knowledge can be stored and re-
trieved before the execution of the respective task, to exploit sensory feedback
information. This kind of training is normaly repeated on a regular basis with
target objects of accurately known pose and dimensions, to alleviate changes
in their dynamic characteristics or in precision due to extensive industrial use.

The training starts with the end-effector going to the desired pose xd that is
the nominal pose relative to the target, e.g., in the case of a hole drill task
the end-effector is positioned over the desired hole position. Then the sensors
are activated and through feature extraction the nominal feature vector fd is
calculated. We assume that in a previous stage we have selected appropriate
features which are not ambiguous, can be located easily under different views
and represent projections of physical structures to the image [3], [4]. However,
even carefully selected features may still have problems to calculate due to
noise, feature extraction imperfections or illumination changes. Clearly there
is a need for a framework able to minimize the influence of outliers in visual
measurements.

Assuming a manipulator with six degrees of freedom, i.e., x, y and z for
position and a, b, c for orientation, and m features extracted from image data
then the Jacobian matrix will be given by:

J =

⎡
⎢⎢⎢⎢⎢⎣

∂f1

∂x
∂f1

∂y
∂f1

∂z
∂f1

∂a
∂f1

∂b
∂f1

∂c
...

...
...

...
...

...

∂fm

∂x
∂fm

∂y
∂fm

∂z
∂fm

∂a
∂fm

∂b
∂fm

∂c

⎤
⎥⎥⎥⎥⎥⎦ (9)

For calculating the J, the end-effector is positioned in k predefined consecutive
spatial poses (normally in equal intervals) around the desired (nominal) pose
xd changing only the r-th degree of freedom, where r ∈ {x, y, z, a, b, c} while
the position and orientation with respect to the other degrees of freedom does
not change. In each intermediate position ri of the current degree of freedom,
input from the sensors is acquired and the feature vector fs(ri) is measured
(for features s=1, 2,. . . ,m and for intermediate positions ri for i=1,2,. . . , k).
In the relatively tight volume that we consider here, the coefficients of the
corresponding column of J can be assumed constant and can be calculated by
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exploiting the feature vector measurements fs(ri). In each training pose ri all
the coefficients of the respective column are calculated simultaneously. The
same procedure is repeated for all columns.

Let us examine each J coefficient ∂fs/∂r separately. To cope with the outliers
that are due to noise in feature measurements (and can corrupt the estimated
J, leading the system to instability) we employ robust statistics, which ”is
proper for recovering the structure that best fits the majority of the data
while identifying and rejecting outliers or deviating substructures” [18].

The estimation of J coefficients is formulated as fitting the vector A =
[α1, α2]

T , for a linear feature model

φs(A, ri) =α1ri+α2 (10)

to a set M of k training feature measurements for the individual feature fs:

M= {fs(r1), fs(r2), . . . , fs(rk)} (11)

The respective coefficient of J is given by the α1 parameter of the feature model
φs. The estimation of A is generally performed by minimizing the quantity:

E =
∑

i=1..k

ρ(gi, σ) (12)

where ρ is an estimation function and σ is a scale parameter of this function.
Furthermore, gi is the residual error value of the measurement with respect to
the coefficient model, in other words:

gi ≡ g(A, ri) = fs(ri) − φs(A, ri) (13)

If the measurement errors are normally distributed the optimal ρ function is
the quadratic, which gives rise to the standard least squares estimation:

ρ(gi, σ) =
g2

i

2σ2
(14)

The problem with the least squares method is that too high weights are as-
signed to the outliers. One way to see this is by considering an influence
function ψ, which characterizes the bias to the solution by a particular mea-
surement. The derivative of the ρ function can be such a function ψ. Clearly,
in the least squares case (Figure 3a) the influence of data points increases
linearly without bound (Figure 3b). Obviously, to increase robustness the ψ
function must minimize the influence of outliers. Such a psi function is the
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derivative of the Geman McClure robust estimator, which has the additional
advantage of gradual transition between inliers and outliers. The related ρ and
ψ functions are displayed in Figures 3c-d and are given by [19]:

ρ(x, σ) =
x2

x2 + σ
(15)

ψ(x, σ) =
2xσ

(x2 + σ)2
(16)

Small values for scale parameter σ make the system more tolerant to outliers,
since their effect is attenuated. This attenuation is depicted in Figure 3.

It can be proved ([20]) that under concavity of q(x) ≡ ρ(
√
x), which is here

the case, any multidimensional minimization problem of the form:

arg min
A

∑
i=1..k

ρ(g(A, ri))) (17)

can be turned into a dual minimization problem:

arg min
A,zi

∑
i=1..k

[mzig(A, ri)
2 + ψ(zi)] (18)

involving weights zi, which lie in (0,1]. If a residual gi is high (an outlier)
the respective weight zi should be close to zero, while for a small residual gi

(inlier, supported by the model) the zi should be close to one. ψ is a continuous
differentiable function and m = lim q′(x)

x−>0+

. In our case m = σ−1.

Because both the weights zi and the residuals gi are unknown, there is no
analytical solution and the minimization has to be solved iteratively. Initially
the value for all zi is set to 1. By doing so, the dual minimization problem
becomes a typical least square problem with respect to A (ψ gives zero in
differentiation). In the next step the current value for A is considered constant,
and thus the gi are constant as well; then we calculate the optimal values for
zi, which are given in a simple closed form by the equation:

zi =
ρ′(gi)

2mgi
=

2giσ

(g2
i + σ)2

· 1

2σ−1gi
=

σ2

(g2
i + σ)2

(19)

The same calculations are repeated in this order until the consecutively cal-
culated values for A and zi converge. The reader is referred to [20], [21] for
more details on how (19) results from (18).
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(a) ρ(x) = x2 (b) ψ(x) = 2x

(c) ρ(x) = x2

x2+σ
(d) ψ(x) = 2xσ

(x2+σ)2

Fig. 2. The attenuation effect of the Geman McClure ρ function compared to the
quadratic ρ function. (a) and (b) display the ρ and ψ for the quadratic case, while
(c) and (d) illustrate the corresponding fucntions in the Geman McClure case. The
attenuation is proportional to the respective ψ function. Unlike in (d), in (b) the
influence of outliers is unbounded. Also, the lower the σ the more attenuated become
the outliers (responses for x’s ”far” from zero), as displayed in (d).

The Algorithm 1 gives an overview the proposed approach. The output is a
model for each coefficient of J with minimum influence from outliers, since we
assign low weights to them.

4 Experimental results

The applicability of the method has been verified through robust estimation of
the image Jacobian for an industrial visual servoing application. It concerns a
sunroof placement installation, which aims to fit a sunroof onto a car body on
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Fig. 3. Experimental setup for sunroof fitting application by employing four cameras.

Algorithm 1 Calculate the J coefficients for one column

{for all poses along a DOF}
for i = 1 to k do
{for all feature measurements}
for s = 1 to m do

acquire measurement fs(ri) from training pose ri

end for
end for
for all coefficients in current column of J do

for i = 0 to k do
zi=1

end for
repeat

set zi value to (18)
solve (18) for A using least squares
set A value to (19)
calculate zi using (19)

until zi and A converge
end for

the automobile production line (Figure 3). We used the 6-DOF manipulator
K-125 of KUKA with the KRC-1 controller, which permits the employment
of external software for control at the end-effector level.

The task of fitting the sunroof on the car body was performed using four CCD
cameras, monitoring the four corners of the sunroof opening. The corners were
identified as the intersection points of the monitored edges. The features used
were the x, y image coordinates of the four sunroof opening corners. We have
used eight image features in total for six degrees of freedom, which made an
overdetermined system. Thus fd = (x1, y1, x2, y2, x3, y3, x4, y4).
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Fig. 4. System convergence for all degrees of freedom after estimation of the feature
Jacobian matrix with initial pose error (x, y, z, a, b, c) = (10, 5, 10, 0.01, 0.01, 0.01).
The displacements for x, y, z are in mm and for a, b, c in rad. The time is measured
in robot cycles (12ms).

We have trained all six degrees of freedom x, y, z, a, b, c of the manipulator.
The distances for which we have trained the system (production tolerances)
were 20mm for x, y, z with steps of 1mm and 5 degrees for a, b, c at steps of 0.5
degrees. We have used a lamp to distract the corner tracker and create several
outliers. This is a situation that can be met in semi-structured environments,
where the illumination can change, e.g., due to welding sparks. The robust
estimator proved itself very useful in all cases that noisy edges were falsely
identified as the target image corners. Similarly, its use can be vital in cases
of not robust feature extractors or changing illumination, where outliers are
expected.
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Some typical system simultaneous responses for all degrees of freedom are
displayed in Figure 4 using a typical PID controler. The end-effector was
displaced from the nominal pose according to the vector (x, y, z, a, b, c) =
(10mm, 5mm, 10mm, 0.01rad, 0.01rad, 0.01rad). The Jacobian matrix that
has been calculated with robust methods led the system to convergence in
less than 20 robot cycles (240ms) for all degrees of freedom at the presence
of noisy measurements. The steady-state error was approximately 0.1mm and
0.0002rad for distance and angle correspondingly. In cases where the robust
estimator was not used, the convergence to the target could not be guaranteed
for the affected degrees of freedom, because of the wrong calculation of the
coefficients of the image Jacobian.

To further verify the robustness the support for the fitted model was used.
In other words the extracted model was rejected if not enough samples could
explain it. This was verified by the sum of the weights of the support samples
which had to be higher than a threshold. Otherwise no training was possible.

The performance of the method depends on how successful is the elimination
of the effect from the outliers. The significance of the parameter σ of the
robust estimator is therefore high. In our epxeriments it was empirically set
and was adapted to the expected standard deviation of the feature extractor
under normal conditions, so that the samples that would fall out of that would
have very small weight.

5 Conclusion

We have presented a method for robust estimation of the feature Jacobian ma-
trix for visual servo controlled systems which does not require calibration. The
method allows for independence of depth measurements and can be applied
for task - execution in semi - structured environments, where the tolerances
in target pose lie within a relatively small volume. The employment of robust
statistics provides a reliable estimation of the image Jacobian even at the
presence of outliers, which are due to image feature extraction imperfection,
or because of illumination changes during the training procedure.
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