

such a methodology is dictated by the complexity of the
domain, the complexity of the available technology and
the difficulty in managing the development process.

The rest of the paper is structured as follows: in the
following section we will define the context of this
research; in Section 3 we will present an overview of the
MD-SIR methodology for integrating sensors in robotic
systems; in Section 4 we will demonstrate the validity of
the approach by presenting the implementation of a pilot
sunroof fitting application; in Section 5 the implementa-
tion of a gap-measuring system is presented following the
same approach; the paper ends with Section 6, which
presents the conclusions and the future work.

2. Research context and previous work

The literature regarding integration of sensory feed-
back in robots is quite rich. However, a holistic
approach in developing software for applications with
sensory feedback at the end-effector level is still missing.
Before analyzing the methodology we present the
context of our research and the related work. Fig. 1
illustrates the architecture of a typical robotic applica-
tion. The left part is adapted from [26], where the levels
of organization, processing and execution are presented
according to the intelligence of the included components
(intelligence increases from bottom to top). The
organization level includes the procedure manager that
defines the robotic tasks execution sequence (usually by
using a robot programming language), the knowledge
base that includes the system’s knowledge about the
environment and the user interface. The processing level
includes the controller, which defines the robot motion
by using the processed input from internal and external
sensors. The execution level includes the actuators,
which perform the requested tasks and the sensors that
provide raw sensory data to the system. The right part in
Fig. 1 presents the layered architecture of the open robot
controllers as presented in OSACA [22]. The upper

layers use the services provided by the lower ones. The
hardware layer includes the processing units that are
used for the software execution. The operating system

controls and synchronizes the use of the resources and
acts as the intermediate layer between the hardware
and the application software. The communication

implements the information exchange between the
subsystems. The configuration allows the installation
and parameterization of the desired subsystems. The
control objects are the subsystems that provide the
continuous processing functionality in the application.
They are interfaced to the software and hardware system
layers through the software- and hardware-API layer,
which should provide plug and play capabilities.

This work focuses on the control objects layer, which
offers its services independently of the organization,
execution and its underlying layers with regard to the
open controller architecture. The control objects are
usually associated with a particular sensor or actuator
type or they can just provide services based on input
from other control objects. The sequence of the
provided services is defined by the organization level
(procedure manager, user interface) and is influenced by
the environment.

The research at the control objects layer has been
quite active. The OROCOS project [23] aims in the
development of open robot controllers and until now it
has issued many useful general guidelines. The GenoM
[16] has presented a methodology for the definition of
the parts of the control objects that perform event-based
state transition. It has described the states for the
standard control objects and has separated the state
control from continuous processing.

For the development of the subsystems of the
controller development, environments such as ORC-
CAD [4] have been proposed. For the implementation of
control objects that are able to perform robotic tasks
(elementary actions) the ESTEREL language [2] has
been used, while the robotic procedures have been
defined using the MAESTRO language [7]. Due to the

Fig. 1. Typical layered architecture of robotic applications. The organizational level includes the procedure manager, the knowledge base and the

user interface; the execution level includes the sensors and the actuators; the processing level includes the robot controller, which may be analyzed to

the open architecture layers (see [22]).

use of formal languages the testing at the organization
level has become possible, while at the processing level
only simple control laws have been able to be tested
assuming that the state error is available. Other
commercial environments that are based on similar
principles are the ControlShell [21] and the GENERIS
[19].

Many other attempts have been made to implement
open control objects such as the SMART [1], the
START [18] and the OSCAR [12], however, without
much emphasis on sensor integration. The ViSP [17] has
presented an object-oriented library of classes that are
used for visual servoing using a single camera mounted
on a robot arm. The systems XVision [8] and Servomatic
[24] have been combined to guide robots using cameras.
Servomatic has been able to use the measurements
coming from systems using pattern recognition libraries
like XVision in order to guide a robot by using
elementary tasks such as fitting point-to-point, point-
to-line, line-to-point and line-to-line. However, the
approach is valid only for image-based endpoint-
closed-loop systems [10]. As regards the control objects
that perform pattern recognition in the sensory data,
there is plenty of open source initiatives or commercial
products, mainly focusing on vision, such as the
TargetJr [27], the Open CV [11], the Halcon [20], etc.

Many of the aforementioned approaches have great
scientific value but cannot be directly applied in industrial
applications due to the fact that most robot controllers
restrict the access at the joint level. Furthermore, many of
the above approaches are limited to specific sensors or
control methods at the end-effector level. Currently,
many robot manufacturers endow their controllers with
an increasing ‘‘openness’’ especially regarding feeding
sensory data into the trajectory generation. Therefore, the
need for a generic methodology for developing software
for sensor-based robot guidance that considers the
commercial controller restrictions becomes obvious. The
presented work capitalizes on the increased ‘‘openness’’
of modern robot controllers, by extending the capabilities
provided by the manufacturer, through intelligent hand-
ling and fusion of acquired information. The proposed
approach constitutes a modular and systematic (algo-
rithmic) way in order to encompass different types of
sensory input; obviously, this approach can be fully
profitable, when the control system architecture allows
for this information exchange to take place. More
specifically, in this research we present the MD-SIR
methodology (Methodology for Developing Sensor-
guided Industry Robots) which offers:

* An architecture that enables the easy sensor integra-
tion into the controllers of open (or semi-open)
architecture. The architecture is generic enough to
facilitate the use of the most commonly used sensors
and the employment of various control methods.

Furthermore, it is modular, extensible and minimizes
the coupling between the components.

* A library of modular and reusable software compo-
nents, at the subsystem or object level. By using the
library units properly, the easy, reliable and cost-
effective development of applications can be
achieved.

* Possibility for a closer collaboration between research
and industry. Through the extensibility of the library
new algorithms can be easily integrated and applied
in the production.

* Paradigms for the use of the library components
along with sensors for the execution of the most
typical robotic tasks.

The methodology is independent of the organizational
and execution levels of the application and of the rest
layers of the robot controller, which are assumed to be
available. Furthermore, the methodology is not limited
to specific control and pattern recognition algorithms.

3. Methodology overview

In the past many robot control schemes have been
presented. However, the industrial robotic manipulators
use invariably the PID controllers in their independent
joint servo control systems. The PID controllers at the
joint level are very simple and robust but are unable
to deal with environment uncertainties and therefore
external sensory feedback is required. By employing
sensory feedback at the end-effector level the dynamics
of the robot may often be decoupled (due to the high
frequency joint control loops) and the manipulator may
be treated as a nearly ideal positioning device.

Most open architecture robot controllers unlike
typical closed architecture controllers, may permit the
user or an external system to define precisely the
interpolation points and oblige the end-effector to
strictly pass through them. However, this restriction
may produce oscillations at the end-effector level
depending partially on the coarseness of the trajectory.
These oscillations may be avoided if an additional
regulator is used. The control scheme presented in Fig. 2
is then applied. The presented methodology proposes
how to develop software that will undertake the robot
regulation at the end-effector level by profiting of the
sensory data.

The methodology leads to the creation of a library

of modular control objects (subsystems that can be
analyzed in reusable components), which are going to be
applied in the framework of an architecture to compose
robotic applications that employ sensory feedback. Vice
versa, the composition of new reusable entities for the
needs of new applications enriches the library. The

development is based on the open controller architecture
and is driven by requirements in an iterative manner
(each development cycle follows the requirements–
analysis–design–implementation–testing pattern). The
library entities are described by attributes, methods,
technical characteristics, restrictions, rules of composi-
tion and interconnection, etc.

3.1. Requirements

The requirements presented here express the function-
ality of the typical robotic application. They are sets of
robotic tasks (according to the terminology used in [4])
and include teaching, parameterization and execution.

* Teaching. Some sections of the robot trajectory can
be executed without strict precision requirements.
These trajectory sections must be pre-recorded during
a procedure called ‘‘teaching’’. In the recorded
trajectory program we can determine the interpola-
tion nodes, at which tasks requiring sensory feedback
will be executed.

* Parameterization. During parameterization the data
needed for sensor-based control are defined and
stored. These data are essential for the operation of
system and they are retrieved each time a task with
sensory feedback has to be executed. For each task
the system must be parameterized separately. The
parameterization may regard the end-effector, the
sensor, the regulator and the processing. It may
include training, during which system parameters are
automatically calculated, e.g. inverse Jacobian ma-
trices resulting from feature measurements while the
robot executes movement at predetermined steps for
each degree of freedom.

* Execution. The system executes a task in real time.
The task includes movement with and without
sensory feedback at the end-effector level. When the
robot moves without sensory feedback it must read
from a database the trajectory that has been stored
during teaching. When sensory feedback is required
the movement must be calculated online using the

parameters that have been fixed during parameteriza-
tion; the parameters are loaded from a database.

3.2. Architecture

The Controller presented in Fig. 1 may be further
decomposed to the Data Processor, the Sensors’
Controller and the Actuators’ Controller at the control
object layer (Fig. 3). The controllers of sensors and
actuators include the vendor software that controls the
sensors and the actuators by setting their desired state
and receiving data from them (sensory data or current
state). The Data Processor receives the sensory data
from the sensors and communicates the desired state
vector to the actuators. It may be decomposed into the
subsystems of the Actuator Manager (AM), the Sensor

Manager (SM), the State Error Calculator (SEC) and
the Sensor–Actuator Interface (SAI).

The AM receives at each robot cycle the current end-
effector state error and calculates the desired state using
a control law (state regulation). The regulation takes
place during execution, parameterization or teaching, in
order to avoid the unwanted end-effector oscillations
and the desired state is sent to the actuator. The robot
interpolation cycle and the sensor cycle may differ
significantly (multi-rate system); therefore, the robot
needs to be coupled with the sensors by using the
intermediate module SAI. SAI receives asynchronously
the state error from the sensors’ subsystem whenever a
measurement is made available by SEC; SAI also
forwards the state error synchronously to AM at each
robot interpolation cycle.

The SM extracts the predefined features (patterns)
from sensory data during execution or parameterization.
It sends data requests to the sensors and receives the
sensor data. It outputs to the SEC the feature
measurements. The SEC receives the feature measure-
ment from the SM along with the current actuator state
from the AM through SAI. It outputs to AM through
the SAI the current state error of the end-effector.

The attributes of the objects used by the subsystems
may be stored in databases; the corresponding database
instances will be referred as AMDB, SAIDB, SMDB and
SECDB in the following (all abbreviations are presented
in Appendix A). Some of the typical library classes
that were used for implementing the subsystems of
the sunroof fitting application (to be discussed in
Section 4) are presented in Appendix B.

Each of the aforementioned subsystems operates
within a loop in a system process. The scheme of each
of those system processes is displayed in Table 1. During
initialization the initial local parameters are loaded from
the corresponding database and the appropriate mem-
ory blocks are initialized (2). The main loop (5–10)
performs the processing work. At the beginning of the
loop the data from other processes and the corresponding

Fig. 2. Closed loop control scheme at the end-effector level. The end-

effector’s state x is measured by the sensing devices and the

corresponding measurement #x is given as feedback; then #x is compared

to the desired state xd; the difference is fed to the regulator and the

regulation output is sent to the robot controller to move the

manipulator.

database (when appropriate) are read (7); then the data
become processed (8) and the results are sent to the
other system processes (9). The integration platform
may implement synchronous or asynchronous commu-
nication from either or both sides. The main loop
commands may vary according to the procedure state,
as will be explained in Sections 4.3 and 5.3. During the
exit procedure, which is executed when the task is
finished, the memory is released and the data may be
stored into the database (13).

4. Sunroof placement application

4.1. Overview

In order to verify the applicability of the methodology
we have developed industrial applications. One of them
is the ‘‘sunroof placement’’ application, which aims to fit
a sunroof onto a car-body on the automobile produc-
tion line. The benefits of the employment of such a
system in the production specialize the general benefits
mentioned in Section 1.

We used the 6-DOF manipulator K-125 of KUKA
with the KRC-1 controller, which allows integration of
external software. Four synchronized cameras were used
for recognizing the current image position of the four
corners of the sunroof opening, which were compared
to their reference position for proper fitting. The edges
used for corner detection were enhanced by using LED

illumination (Fig. 4). The required accuracy was better
than 0.5 mm and the fitting task had to be executed
within a few seconds.

4.2. Software

The software structure at the subsystem level is
presented in Fig. 5 and stems from the generic scheme
presented in Section 3.2. The image processing require-
ments were covered using two parallel processes (P5-P6),
each of them hosting a pair of instances of the SM

subsystem and an SMDB database instance. Each of the

Fig. 3. Decomposition of the robot controller at the control object layer into the Sensors Controller, the Actuators Controller and the Data

Processor; the latter is further decomposed into the SM, the SEC, the SAI and the AM.

Table 1

Execution scheme of a system process with the initialization phase, the main loop and the exit phase

1 /* Initialization */

2 {COMMUNICATION WITH DB AND INITIALIZATION OF LOCAL PARAMETERS}

3

4 /*Main loop*/

5 while {CONDITION}

6 {

7 {RECEIVING DATA}

8 {PROCESSING DATA}

9 {SENDING DATA}

10 }

11

12 /* EXIT */

13 {STORING TO DB AND MEMORY DEALLOCATION}

Fig. 4. The experimental installation mainly includes the manipulator,

the gripper with four cameras and eight LED lamps mounted on it and

the roof of a vehicle with a sunroof hole.

SMI-SM4 processed the data acquired by the corre-
sponding camera. The instances of AM, SAI, SEC are
placed on the processes P2, P3, P4 correspondingly
along with the databases AMDB, SAIDB, and SECDB,
which maintain the subsystem parameters. The system
communicated with the robot through a server process
and with the user through the user interface UI.
Appendix B presents some of the most typical
library classes that were used for the subsystems’
implementation.

The AM used a simple PID regulator and the SAI was
programmed to send the end-effector pose (EEP) error e

to AM in the immediate robot cycle after the e became
available (see Appendix B). In case that no new error
estimation was available, the forwarded error was set
to zero.

The features objects used in SM for visual servoing
were the four corners on the sunroof opening (each
camera observed a corner). The corners were recognized
as composite features (see Appendix B) resulting from
the intersection of the sunroof opening edges. The Track
method implemented a snake-like algorithm for edge
recognition [13]. The desired states of the features were
defined from the states of the recognized features when
the end-effector had the nominal pose.

The approach that we followed in SEC for pose error
calculation was image-based and endpoint open loop
[10]. For the system state estimation we have used the
extended Kalman filter [28] and Bierman factorization
to reduce error propagation [3] (see Appendix B). The
system state was given by the vector

Wk ¼ ½x; ’x; y; ’y; z; ’z; a; ’a; b; ’b; c; ’c�Tk ð1Þ

which includes the pose error of the end-effector with
reference to a nominal pose and the corresponding
velocities.1 For the calculation of the EEP we have
established an over-determined system through measur-
ing the image coordinates xi; yi of the four

corner points. The measurement vector fk is given by
the following equation:

fk ¼ ½ x1 y1 x2 y2 x3 y3 x4 y4 �Tk : ð2Þ

We have assumed that the image Jacobian that
linearizes the non-linear system is constant in the limited
workspace region within which the end-effector is
expected to move. We have calculated the Jacobian
matrix through a training procedure. During this
procedure the state and measurement noise covariance
matrices were also estimated.

4.3. Implementation of tasks

For the realization of the required sets of tasks
described in Section 3.1, the presented subsystems as
well as the objects defined in the MD-SIR library have
been used. The interaction of the subsystems as well as
sample code for programming the subsystems are
presented.

4.3.1. Teaching

The teaching procedure has been implemented as
follows: while the user moves the robot along the desired
trajectory the system receives synchronously from the
robot controller each intermediate pose; then the system
stores the pose vectors into the robot pose database.

The modules that participate in teaching (Fig. 6) are
the AM, the robot server and the RobPosDB. The latter
is used for storing the intermediate taught robot
positions. Analytically:

1. The AM initializes the database instance RobPosDB

sending data that indicate the recording of a new
trajectory.

2. From RobotServer the current robot pose is read.
3. The AM sets to RobPosDB the current EEP.

Steps 2–3 are repeated at the robot interpolation
rate, while the robot moves along the desired
trajectory. Then:

4. AM signals the end of trajectory recording.

Fig. 5. The software architecture for the sunroof-placing system. One instance of AM, SAI, SEC and four instances of the SM subsystems are used.

1The velocities are calculated using the current, the previous pose

and the known interpolation period.

After recording, the trajectory can be stored perma-
nently for future use. Additionally, tasks requiring
sensor feedback may be inserted on intermediate nodes
of the trajectory through the user interface.

4.3.2. Training

4.3.2.1. Subsystems’ interaction. A sub use case of
parameterization with particular interest is the training
(experimental calculation of the feature Jacobian).
During training the taught robot trajectory is read
synchronously from the pose database and is executed,
until an intermediate pose is reached, from which a
task that requires visual feedback is going to be
trained. Then all the subsystems load the parameters
that were defined offline for this task (in a previous
parameterization procedure). Then the end-effector
moves stepwise along a predefined training trajectory
for each degree of freedom of the task space. During
each training step the sensor subsystem measures the
features on the images that are acquired synchronously
by the cameras. When the training movement is
completed, the feature Jacobian matrix for the task is
calculated based on the feature measurements; then the
inverse feature Jacobian is stored into the corresponding
database.

The participating subsystems are the AM, SAI, SEC,
SM and the databases RobPosDB, SAIDB, SECDB,
SMDB. Additionally the TrainingDB is used, which is
the database that holds the data defining the training
movement. The training interaction using a single SM

instance is presented in detail in Fig. 7 and has as
follows:

1. AM reads from RobPosDB the next stored EEP, at
which no sensory feedback is required.

2. AM calculates the next EEP eventually using a
control law.

3. AM sets the next EEP to the robot. The current
EEP is returned.

4. Next pose(s) is (are) read from RobPosDB and in
this case sensory feedback is required.

5. AM reads from AMDB the required parameters.
6. SAI reads from SAIDB the required parameters.
7. SEC reads from SECDB the required parameters.
8. SM reads from SMDB the required parameters.
9. AM requests (blocked) from SAI the offset vector

that defines the next training EEP.
10. SAI reads the TrainingDB, where the consecutive

training EEPs are stored. When the offset is read the
SAI and the AM become unblocked.

11. Next EEP is calculated using a control law.
12. AM sets the next EEP to the robot. The current EEP

is returned.
Steps 11–12 may be repeated until the distance

between the current and the target training pose
becomes smaller than a predefined threshold or a
timeout occurs. In the second case there is an error
condition. We assume the first case:

13. AM signals to SAI (blocked) that the desired pose is
reached and the measurement can be executed.

14. SAI requests from SEC a measurement (blocked).
15. SEC requests measurement from SM (blocked).
16. SM executes the measurement. After measuring the

SEC becomes unblocked.
17. SEC stores the measurement vector. Then SAI and

AM become unblocked.
Steps 9–17 are repeated for each training step for

all degrees of freedom of the task space. After loop
completion:

18. SEC calculates the generalized inverse Jacobian.
19. The inverse Jacobian is sent to SECDB where it is

stored.

After step 19 training is finished. The same procedure
is repeated for all tasks that need training. The period of
steps 1–3 equals the robot interpolation cycle. The steps
9–11 where sampling and processing take place last for
this system about 38 ms (CCIR camera). The rest steps
last for fractions of 1ms.

4.3.2.2. Subsystems’ programming. The programming
of the main training loop of the SM subsystem is
presented in Table 2. The image is acquired (2), the
feature corner is extracted through the Track method of
the object corner of the class CCompFeature (4), the
measurement is read (5) and finally sent to SEC (7). At

Fig. 6. The subsystems’ interactions during teaching. The user moves

the robot along the desired trajectory, the system receives synchro-

nously from the robot controller each intermediate pose and then the

system stores the pose vectors into the robot pose database.

the initialization (see Table 1) the corner is defined (by
combining two CLine objects), as well as the sensor
through the object camera of the class CMonoCamera (see
Appendix B for description).

The main training loop of SEC (Table 3) includes the
reception of the next EEP from the SAI (2) as well as the
previous measurements from SM (3). For each inter-
mediate training pose the measurements are set to the
object jc of the class CJacobianCalcConstant (4—see
Appendix B for description). The columns of the
Jacobian matrix are calculated automatically internally

in the jc. At initialization the jc object becomes
initialized and at exit (see Table 1) the calculated
Jacobian matrix is inverted and stored into the SECDB.

4.3.3. Execution

4.3.3.1. Subsystems’ interaction. During execution the
taught robot trajectory is read synchronously from the
pose database and is executed, until an intermediate
pose is reached, from which a task that requires visual
feedback is going to be performed. Then all the
subsystems load the parameters that were, defined

Fig. 7. The subsystems’ interaction during training. The taught robot trajectory is executed and when a task requiring visual feedback is to be trained

all the subsystems load the parameters from a database, the end-effector moves stepwise along a predefined training trajectory for each degree of

freedom of the task space and the sensor subsystem measures the image features. When the training movement is completed the feature Jacobian is

calculated and its inverse is stored into the database.

Table 2

Implementation of the training and execution loop of the SM subsystem

1while {CONDITION} {

2 if {camera.Sense ()!=SNS NO ERROR) {EXCEPTION HANDLING)

3 else {

4 if (corner.Track(&pCfg) {EXCEPTION HANDLING}

5 if (corner.GetCurrentState(&measurement) != FTR NO ERROR) {EXCEPTION HANDLING}

6}

7 {SEND MEASUREMENT TO SEC}

8}

offline for this task. Then the AM requests from the SAI

the measured error of the EEP. Due to the difference
between the robot and the camera sampling rate the
measurement may not be available; in that case a zero
pose error vector is received, else from the error vector a
pose correction vector is calculated (using a PID
regulator) and sent to the robot controller. The
procedure is repeated until the pose error becomes very
small.

The task execution is performed in real time using the
parameters defined during parameterization and train-

ing (Fig. 8). The participating subsystems are the AM,
SAI, SEC, SM and the databases RobPosDB, AMDB,
SAIDB, SECDB, SMDB.

The Robot Server, AM and RobPosDB operate at
robot interpolation rate, while the SEC and SM,
operate at sensor sampling rate. The SAI communicates
asynchronously with AM and SEC. Therefore, the
relative order of the signals between subsystems operat-
ing in different rates is just indicative, e.g. 12 is not
certain to precede 13.

The steps 1–8 are identical with those presented in
Section 4.3.2.

9. AM requests an EEP error vector from SAI. The
SAI has no available error, due to the fact that no
sensor data have been acquired yet and thus returns
a zero vector.

10. SAI requests the error from the SEC asynchro-
nously.

11. AM calculates from the error the desired EEP using
a PID regulator.

Table 3

Implementation of the training loop of the SEC subsystem

1 while (CONDITION) {

2 {RECEIVE POSE frame FROM SAI}

3 {RECEIVE MEASUREMENTS meas FROM SM}

4 if (!jc.SetMeasurements (&frame,&meas)) {EXCEPTION

HANDLING}

5 }

Fig. 8. The subsystems’ interactions during execution. The taught robot trajectory is executed and when a task requiring visual feedback is to be

performed all the subsystems load the parameters from a database, the AM requests from the SAI the measured error of the EEP, the SAI returns the

current pose error or zero (due to the different camera and robot interpolation rate) and the regulated pose is sent to the robot controller. The

procedure is repeated until the pose error becomes very small.

12. SEC requests a measurement from SM synchro-
nously, so that SEC will be able to calculate the
pose error.

13. AM sends to the robot the correction vector.
14. The call is executed similarly to (9) and zero error is

returned since there is no measurement available
yet.

15. Similarly to (11) the next EEP is calculated using
zero error.

16. The next pose is set to the robot.
17. Similar to (14) since no measurement available.
18. Similar to (11).
19. Data acquisition and processing are finished and

SM returns to SEC the feature measurement vector.
20. Similar to (16).
21. SEC calculates the EEP error based on the new

measurements.
22. SEC finished the calculations and calls SAI

asynchronously and sets the current error vector.
23. AM requests from SAI the correction for EEP. SAI

returns the calculated error vector.
24. AM calculates the desired EEP from the input error

using a PID regulator.
25. AM sends to the robot the correction calculated

in (24).

4.3.3.2. Subsystems’ programming. The code that im-
plements the execution loop for SEC and AM is
presented in Tables 4 and 5, while for the SM the code
presented in Table 2 applies.

During the main execution loop of SEC (Table 4) the
measurements from SM are read (2); then they are set to
the filter (3), the filter cycle is executed (4) and the new
state is read (5); finally, the state that expresses the pose
error is sent to the SAI (6). During initialization (see
scheme presented in Table 1) the SEC reads from
the SECDB database the Kalman filter parameters and
the corresponding Jacobian matrix and sets them to the
filter object (of class CKalmanFilter); it also makes a
first estimation for the next system state and the state
noise covariance.

The execution loop of AM (Table 5) is implemented
by reading initially the pose error from SAI (2). Then for
each degree of freedom it sets the corresponding error to

the corresponding regulator (4) and calculates/reads the
desired correction (5). Finally, the correction is sent to
the robot controller (7). The initialization function
(according to the scheme presented in Table 1) reads
the AMDB database and sets the appropriate para-
meters to the regulator [i] objects.

Many experiments have been performed to verify the
proper system function. The results for a typical case are
presented in Fig. 9; it illustrates the system response for
initial displacement ðx; y; z; a; b; cÞ=(10 mm, 5mm,
10 mm, 0.01 rad, 0.01 rad, 0.01 rad) from the reference
EEP for the six degrees of freedom of the task space.
Time is expressed in sensor cycles. The rise time was
quite fast (circa 10 sensor cycles) and the overshooting
was small (less than 25% of the initial value). The error
in the final state was practically zero. From the
experiments we inferred that given the proper algo-
rithms and a proper parameterization the system was
asymptotically stable.

5. Gap measurement application

The next application built using the MD-SIR
methodology was a system for visual gap inspection
on the automobile production line. Although it was a
non-robotic application it was used for extending the
library with reusable components mainly concerning
stereo vision.

5.1. Overview

The inspection of produced cars is a significant part of
the manufacturing process that includes the dimensional
inspection of the openings (gaps) between the surface
panels of the vehicle. By employing a visual gap
inspection system, the task can be executed very quickly
and accurately, without any physical contact or human
interference, achieving 100% production monitoring
and the measurements can be automatically stored into
databases.

We used a measurement head that includes a pair of
cameras used for stereo vision and a pair of infra red

Table 4

Implementation of the execution loop of the SEC subsystem

1 while(CONDITION) {

2 {RECEIVE MEASUREMENT VECTOR meas FROM SM}

3 if (!filter.SetF(&meas)) {EXCEPTION HANDLING}

4 if (!filter.PerformCycle()) {EXCEPTION HANDLING}

5 if (!filter.GetW(state)) {EXCEPTION HANDLING}

6 {SEND ESTIMATED ERROR TO SAI}

7 }

Table 5

Implementation of the execution loop of the AM subsystem

1 while(CONDITION) {

2 {READ EXECUTION OFFSET X[DOF NUM] FROM SAI}

3 for (dof=0; dofoDOF NUM; dof++) {

4 if (!regulator [dof] . SetXin(&X[dof])) {EXCEPTION

HANDLING};

5 if (!regulator[dof] . GetXout(&Y[dof])) {EXCEPTION

HANDLING};

6 }

7 {SET CALCULATED CORRECTION TO ROBOT}

8 }

LED lamps to highlight the edges of the gap, thus
achieving independence of the target color and immu-
nity to environmental illumination (Fig. 10). The
measurement was triggered by a light barrier. The
system had to measure the width and the flush of
the gap, with an accuracy better than 0.1 mm. The
measured values were compared with the desired ones
and then the system indicated corrective actions.

5.2. Software

The software structure at the subsystem level is
presented in Fig. 11 and resembles the architecture
presented in Fig. 5. The image processing requirements
were covered using four parallel processes (P7-P10),
each of them hosting a pair of instances of the SM

subsystem (enhanced compared to the one presented in

the first application) and an SMDB database instance.
Each of the SM1-SM8 processes the data acquired by
one camera. The four instances of the subsystems Gap
Calculator (GC) (located in processes P3–P6 along with
the database GCDB), calculate the gap dimensions
using stereo techniques. The subsystem Event Manager
(EM) and the corresponding database EMDB are used
for initiating the measurement after receiving triggers
from light barriers and will not be further examined.

For the implementation of the SM subsystem we have
used many of the classes that were implemented for the
purposes of sunroof fitting (e.g. CMonoCamera, CImage,
CFeature, CFeatureState, CFramegrabber—see Ap-
pendix B). Thus, the development effort and costs were
reduced by the corresponding amount required for the
development of the reused entities. Additionally, we
have implemented through inheritance the classes for
the ellipse feature (CEllipse) and its state (CEllipse-
State) for identification of circles that were used during
calibration (an object of CCompFeature, was defined for
recognition of the calibration pattern). For the identi-
fication of the gap, which was defined through the
CFeatureGroup/TS template.

The subsystem GC executes gap calculation using the
measurements from a camera pair and provides the
means for their calibration. The library has been
extended through classes regarding the stereo system
(CStereoSystem) and the 3D gap (CGap3D). The
CStereosyStem includes the model of the two cameras
and enables calculation of 3D points and lines from
pairs of two-dimensional (2D) measurements using the
camera models (Calculate3DPoint, Calculate3DLine
methods) that implement the calculation procedure
described in [9], provided that the calibration has been
executed using a proper algorithm (e.g. [25]). The
CGap3D includes the attributes Width, Flush and the
pose Pose. If the cameras are calibrated and the 2D gaps

Fig. 9. The system response for initial displacement ðx; y; z; a; b; cÞ=(10mm, 5 mm, 10mm, 0.01 rad, 0.01 rad, 0.01 rad) from the reference EEP for

the six degrees of freedom of the task space. Time is expressed in sensor cycles.

Fig. 10. Definition of gap dimensions (width, flush) and a gap

measurement head configuration including two pairs of cameras and

lamps.

are known the 3D gap dimensions and pose can be
estimated using stereo techniques.

5.3. Implementation of tasks

The tasks include the parameterization for image
processing and sensor and the execution, during which
the measurement is performed. These are analyzed in the
following.

5.3.1. Parameterization

It regards mainly the parameterization of the vision
system (e.g. image feature definition, thresholds). The
subsystems used are the SM1–SM2 for sensor manage-
ment, GC for gap calculation, and the corresponding
databases SMDB, GCDB. The latter stores parameters
regarding the 3D recognition and the respective CAD
models for the gap.

In the initialization cycle for SM the framegrabber,
the camera and the gap to be measured are initialized.
The parameterization loop (Table 6) for measuring the
gap is performed in a similar fashion as the corner
measurement in Section 4.3.2 (Table 2). Here, the
feature to be recognized (2D gap) is not set directly by
the user but through the projection of the 3D gap on the
camera plane that is received from the GC (line 3).2 At
the end of the loop the measurements are sent to the GC.

As regards the GC, during initialization the subsystem
reads from the database the camera models and the rest
3D processing parameters, the 3D CAD models of the
gap and the cameras. The parameterization cycle (Table
7) includes data reading from the database, (2) reception
of the 2D measurements regarding the gap from SM1–

SM2 (3) and updating of the related parameters
including the camera model (4). Then the 3D gap
(gap3D) is calculated (5) based on the 2D gaps and the
configuration of the stereo system. The measurement is

read (6) and written into the database (7). Finally, the
projected features (projections of the 3D gap model on
the camera planes) are sent to the SM1–SM2 (8).

5.3.2. Execution

During execution the gap is measured using the values
that were defined in the parameterization phase, thus,
there is no need for an update of the fixed parameters by
reading the databases in each cycle. Furthermore, the
projected gap features are not transmitted from GC to
SM1–SM2 because they were also fixed during para-
meterization. For each of the SM1, SM2 the execution
loop is implemented by the same code that was
presented in Table 6, with the difference that lines 2–3
in Table 6 are omitted. Similarly, for the GC subsystem
the execution loop is implemented by the same code that
was presented in Table 7, with the difference that lines 2
and 8 are omitted.

The validity of the system that has been composed
through the methodology is verified by the experimental
results, which reveal a typical mean accuracy of 0.07–
0.08 mm and an RMS error of 0.09 mm for width and
flush correspondingly [14]; thus the user requirements
are fulfilled.

5.4. Potential reuse: the gap-measuring robot

From the MD-SIR library new applications can be
derived. One of them is the gap-measuring robot. The
setup and maintenance overhead of running a static
system with separate measurement heads for each
measurement position is quite big and the system is
unable to measure gaps on the front and rear car panels
(except for the ones that are visible from the top) due to
the assembly line movement that allows only measuring
from the side. Finally, the vehicle displacement from the
reference position on the assembly line is not allowed
to be very big due to calibration inaccuracies and
illumination considerations. These constrains can be

Fig. 11. The software architecture of the static gap-measuring system. One instance of the EM, four instances of the GC and eight instances of the

SM subsystems are used.

2The camera calibration procedure, which is not described here

defines the relative pose between camera and 3D gap.

overcome if we use a robot with a gap-measuring head
(robotic tool) mounted on its hand.

Similar to the sunroof fitting system, the tasks of
teaching, parameterization and execution are required.
During execution the robot follows the recorded
trajectory blindly and when the measurement position
is reached it measures the gap and its relative gap pose.
If it is not within the acceptable limits a correction pose
is generated and the procedure is repeated in the new
pose until the pose becomes valid for measurement.3

Then the measurement is forwarded for storage.
It is clear that the functionality required for building

a gap-measuring robot has been already implemented
and thus the system can be composed by assembling
properly existing subsystems (Fig. 12). The pattern
recognition requirements are identical with the ones
presented in the static gap-measuring system and the
SM subsystem defined in Section 5.2 can be reused. The
error of the tool pose can be calculated using the relative
pose of the tool with regard to the gap using the
reference pose defined in calibration. Therefore, the
whole GC subsystem defined in Section 5.2 can be
reused to implement the State Error Calculator (SEC).
The functionality that was developed for the AM

subsystem of Section 4.2 covers the regulator require-
ments. The same applies to the SAI subsystem. Thus,
the most difficult and time-consuming tasks of develop-
ing the subsystems can be by-passed by reusing the
existing and well-tested components of the MD-SIR
library on the basis of the proposed architecture.

6. Conclusions and future work

In this paper, we have presented a new methodology
for developing software for robotic applications with
sensory feedback at the end-effector level, provided that
an open controller architecture is available. The
presented methodology leads to the creation of a library
of reusable entities. The entities can be applied to
compose robotic applications that employ sensory
feedback and the library evolves as new modular
applications are built.

The library entities (subsystems and objects) belong
to the control object layer of the open architecture thus
ensuring maximum portability. Their functionality
includes sensor interfacing, sensor modeling, pattern
recognition, pose estimation and state regulation. The
main advantage of the proposed approach is that it may
potentially decrease dramatically the cost of develop-
ment of new applications, with minimal intervention
both in the programming and in the mechanical aspects.
By following the interaction paradigms and by using
objects from the library classes the processing loops of
the subsystems can be easily implemented. The system
programming following the MD-SIR methodology can
lead to high quality systems that fulfill the user
requirements, provided that the system has been
properly parameterized and that the proper algorithms
are employed. The proposed architecture promotes
modularity and reusability; subsystems or objects can
be easily substituted by other similar ones with no other
system alteration, provided that the same interfacing
rules are maintained. The library is developed dynami-
cally in extent with implementation of new functionality,
but also in depth with the easy incorporation of
new, more robust and efficient algorithms. The new

Table 6

Implementation of the parameterization loop of the SM subsystem

1while (CONDITION) {

2 {UPDATE PARAMETERS BY READING DATABASE}

3 {RECEIVE PROJECTED GAP FROM GC}

4 if (camera.Sense()!=SNS NO ERROR) {EXCEPTION HANDLING}

5 else {

6 if (gap2D.Ttack (&ipconfig)) !=FTR NO ERROR) {EXCEPTION HANDLING}

7 if (gap2D.GetCurrentState(&measurement))!=FTR NO ERROR) {EXCEPTION HANDLING}

8}

9 {SEND MEASUREMENT TO GC}

10}

Table 7

Implementation of the parameterization loop of the GC subsystem

1 while (CONDITION) {

2 {READ APPROPRIATE DATA FROM DATABASE}

3 {RECEIVE GAP MEASUREMENTS FROM SM1,SM2}

4 {UPDATE GC PARAMETERS}

5 if (!gap3D.Calculate(&gap1 2D,&gap2 2D,&stereo))

{EXCEPTION HANDLING}

6 if (!gap3D.GetMeasurements(&measurements)) {EXCEPTION

HANDLING}

7 {WRITE GAP MEASUREMENT TO DATABASE}

8 {SEND DESIRED PROJECTED FEATURES TO SM1, SM2}

9 }

3 If the relative pose of the measurement head and the gap is far from

the reference one then the measurement error is unacceptable due to

the calibration error and due to the displacement of the highlighted

lines (specular reflection).

algorithms can be easily integrated in industrial systems
and a closer collaboration between industry and
research can be established.

We have demonstrated the proposed methodology by
composing two real applications, a sunroof fitting robot
and a gap-measuring installation. In the latter the
biggest part of sensor managing objects were reused—
thus significantly reducing the developing costs—and
the library was enriched with algorithms for recognition
of new visual features, camera calibration and stereo
vision. The benefits of reuse may become much more
obvious in the future, in the implementation of a gap-
measuring robot. The presented applications served as

paradigms and demonstrated the interaction rules
(interfacing) between the modules. The methodology
was demonstrated for integration of multiple cameras,
but it can be extended to incorporate other popular
sensors, since the architecture poses no strict constraint
regarding the data communicated between the SM, SEC

and SAI; these data are simply the vectors of the sensor
measurements and the state error.

Anyone who deals with the development of robotic
applications can benefit from this work, especially those
that seek to couple the mechanical flexibility of
industrial robots, with the flexibility to ‘‘build’’ various
diverse applications with common characteristics.

Fig. 12. The software architecture of a robotic gap-measuring system. One instance of AM, SAI, SEC and two instances of the SM subsystems are

Fig. 13. The classes implementing the Jacobian Calculator (CJacobianCalculator, CJacobianCalcConstant) the Kalman filter (CKalmanFilter) and

the Regulator (CRegulator, CPidRegulator); the most important attributes and methods are presented.

Previous efforts such as OSACA and OROCOS have
been considered and it is the aim of the authors that this
work will trigger further investigation and will inaugu-
rate interactions with these research groups.

In the future the need for more intelligent industrial
robots that will operate using sensory feedback will
become more obvious. Therefore, methodologies like
MD-SIR are expected to gain in interest. Since it is well
known that no single sensor type is able to guarantee full
perception of the environment [5], the library has to be
extended with classes that will provide the infra
structure for sensor fusion. A long-term objective is
the implementation of an open integrated environment
for the development and testing of the control objects.
This environment will support the use of many sensors
and actuators and will include their models for
simulation purposes along with pattern recognition
and control algorithms.

Appendix A

The abbreviations used in the paper are presented in
Table 8.

Appendix B

Some of the most typical classes and class templates
included in the MD-SIR library are briefly described in
the following.

Table 8

AM Actuator manager

AMDB Actuator manager database

EEP End effector pose

EM Event manager

EMDB Event manager database

GC Gap calculator

GCDB Gap calculator database

RobPosDB Robot pose database

SAI Sensor actuator interface

SAIDB Sensor actuator interface database

SEC State error calculator

SECDB State error calculator database

SM Sensor manager

SMDB Sensor manager database

TrainingDB Training database

UI User interface

Fig. 14. The classes, class templates and structures implementing the sensors (CSensorc/TS, CMonocamera, CMonoCameraModel,

CAM PARAM), the image (CImage/TS), the ROI (CRoi/TS) and the digitizers (CDigitizer, CFramegrabber, CMeteor2); the most important

attributes and methods are presented.

B1. Actuator manager and sensor–actuator interface

The regulator abstract class CRegulator is presented
in Fig. 13 and defines the input and the output and
methods for reading–writing and calculating the output.
The CPidRegulator class is derived from CRegulator

and implements a PID regulator. It additionally
includes, the proportional–integral–derivative factors
(Kp, Ki, Kd), and the interpolation cycle attribute T.

B2. State error calculator

The Jacobian matrix calculation is performed using
the CJacobianCalculator abstract class, from which
the CJacobianCalcconstant is derived4 (Fig. 13). The
most important attributes of the base class are the
calculated matrix J and the value range of the input
features and the input pose. In the CJacobianCalcCon-

stant class we have defined the matrices for the desired

minimum values of the Jacobian elements SDT and the
threshold for the allowed standard deviation MT and the
array vector RM that holds all the training measurements.

The class definition that has implemented the Kalman
filter is presented in Fig. 13 CKalmanFilter. It includes
the measured and the predicted state W, the measurement
vector F, the state and measurement noise covariance
matrices, Q, R, the Jacobian J that linearizes the non-
linear system and the system matrix A. The filter cycle is
performed by calling the PerformCycle method (or the
user can call separately the SetF, the Update and the
Predict methods).

B3. Sensor manager

The class template CSensor/TS uses a pointer to the
sensor model Model (CMonoCameraModel for mono-
chrome cameras) to acquire data through the Sense

method and the data are stored into the location pointed
by Image (Fig. 14). The sensor images are implemented
in a unified fashion by the class template CImage/TS.
The T can be unsigned char for monochrome camera
images, double for range images, etc. The Source

pointer is the buffer of the digitizer. The region of

Fig. 15. The classes and class templates implementing the features (CFeature/TS, CLine/TS, CEllipse/pS, CPoint/TS, CFeatureGroup/TS,

CCompFeature/TS) and their states (CFeatureState CLineState, CEllipseState, CPointState, CCompState/TS); the most important attributes and

methods are presented.

4From the reference pose the tool performs predefined step

movements for each degree of freedom and the measured features

are combined with the intermediate poses to calculate the Jacobian

elements using linear regression.

interest (ROI) is a subset of the image, in which we
search for particular features and it is implemented by
the CRoi/TS template. By applying a mask to it (Mask)
we are able to limit the search within any custom-
defined region in the ROI. The digitizers are implemen-
ted by the abstract class CDigitizer, from which
type specific (CFrameGrabber) and vendor specific
classes (CMeteor2) classes can be derived through
inheritance.

The class templates of some 2D features that we
recognize in the sensory data are presented in Fig. 15.
From the abstract class template CFeature/TS various
feature class templates can be defined. It includes
pointers to the image (PImg/TS) and to the related
ROI (PRoi/TS). Furthermore, it defines the virtual
function Track, which recognizes the feature in the
image within the ROI, given the processing parameters
(pointed by pCfg). When integrating new pattern
recognition algorithms it is the only method that has
to be reprogrammed. The features may be geometrical,
e.g. point (CPoint/TS), line CLine/TS) or algorithmic;
each feature has its own desired and measured state
(CPointState, CLineState). Groups of features may be
specified through the CFeatureGroup/TS template and
an example is the CGap2D/TS that uses line features to
detect gaps in 2D. The concept of feature group is
extended to define a composite feature (CCompFea-
turec/TS class template). The composite feature state
depends on the individual feature states but also gives
feedback to them [8].

References

[1] Anderson RJ. SMART: a modular architecture for robots and

teleoperation. IEEE International Conference on Robotics and

Automation, Atlanta, Georgia, 1993.

[2] Berry G. A quick guide to ESTEREL. Technical Report, Ecole

des Mines de Paris and INRIA, 1997.

[3] Bierman GJ. Factorization methods for discrete sequential

estimation. New York: Academic Press, 1977.

[4] Borelly J, Maniere E, Espiau B, Kapellos K, Pissard-Gibollet R,

Simon S, Turro N. The ORCCAD architecture. Int J Robotics

Res 1998;17(4):338–59.

[5] Chandrinos KV, Kosmopoulos DI, Spyropoulos CD. Vision-

based navigation for indoor service robots. European Workshop

on Service and Humanoid Robots, Santorini, Greece, 2001.

[6] Common Object Request Broker Architecture, http//:www.

corba.org.

[7] Coste-Mani"ere E, Turro N. The MAESTRO language and its

environment: specification, validation and control of robotic

missions. IEEE Int Conf Intelligent Robots Systems 1997;2:

836–41.

[8] Hager G, Toyama K. XVision: a portable substrate for real-time

vision applications. Comput Vision Image Understanding

1998;65(1):14–26.

[9] Hager GD. A modular system for robust positioning using

feedback from stereo vision. IEEE Trans Robotics Automation

1997;13(4):582–95.

[10] Hutchinson S, Hager G, Corke P. A tutorial introduction to

visual servo control. IEEE Trans Robotics Automation

1996;12(5):651–70.

[11] Intel Corporation: Open source computer vision library, http://

www.intel.com/research/mrl/research/opencv/.

[12] Kapoor C. A reusable software architecture for advanced

robotics. Ph.D. dissertation, University of Texas, Austin, 1996.

[13] Kass M, Witkin A, Terzopoulos D. Snakes: active contour

models. Int J Comput Vision, 1988;1(4):321–31.

[14] Kosmopoulos D, Varvarigou T. Automated inspection of gaps on

the automobile production line through stereo vision and specular

reflection. Comput Ind 2001;46:49–63.

[15] Lange F, Hirzinger G. Is vision the appropriate sensor for cost

oriented automation? Sixth IFAC Symposium on Cost Oriented

Automation, Berlin, Germany, 2001.

[16] Mallet A, Fleury S, Bruyninckx H. A specification of generic

robotics software components: future evolutions of GenoM in the

OROCOS context. IEEE International Conference on Intelligent

Robots and Systems, Hawaii, HA, 2001.

[17] Marchand E. ViSP: a software environment for eye-in-hand visual

servoing. IEEE International Conference on Robotics and

Automation, Detroit, MI, vol. 4, 1999. p. 3224–30.

[18] Mazer E, Boismain G, Bonnet des Tuves JM, Douillard Y,

Geoffroy S, Doubourdieu N, Tounsi M, Verdot F. START: an

application builder for industrial robotics. IEEE International

Conference on Robotics and Automation, Leuven, Belgium, 1998.

[19] Morales ER. GENERIS: the EC-JRC generalized software

control system for industrial robots. Ind Robot 1999;26(1):26–32.

[20] MVTec Software GmbH, http://www.mvtec.com/.

[21] Real Time Innovations: ControlShell, http://www.rti.com/pro-

ducts/controlshell/CS.html.

[22] Sperling W, Lutz P. In: Enabling open control systems—an

introduction to the OSACA system platform, robotics and

manufacturing, vol. 6. New York: ASME Press, 1996.

[23] The OROCOS project http://www.orocos.org.

[24] Toyama K, Hager G, Wang J. Servomatic: a modular system for

robust positioning using stereo visual servoing. International

Conference on Robotics and Automation, Minneapolis, 1996.

p. 2636–43.

[25] Tsai RY. A versatile camera calibration technique for high-

accuracy 3D machine vision metrology using off-the-shelf TV

cameras and lenses. IEEE Trans Robotics Automation

1987;3(4):323–44.

[26] Valavanis KP, Saridis GN. Intelligent robotics systems: theory,

design and applications. Kluwer: Boston, 1992.

[27] Vxl/TargetJr standard software platform, http://www.esat.kuleu-

ven.ac.be/Btargetjr/.

[28] Wilson WJ, Williams Hulls CC, Bell GS. Relative end effector

control using Cartesian position based visual servoing. IEEE

Trans Robotics Automation 1996;12(5):684–96.

http//:www.corba.org
http//:www.corba.org
http://ttp://www.intel.com/research/mrl/research/opencv/
http://ttp://www.intel.com/research/mrl/research/opencv/
http://www.mvtec.com/
http://www.rti.com/products/controlshell/CS.html
http://www.rti.com/products/controlshell/CS.html
http://www.orocos.org
http://www.esat.kuleuven.ac.be/∼targetjr/
http://www.esat.kuleuven.ac.be/∼targetjr/

