
����������
�������

Citation: Pikoulis, E.-V.; Bifis, A.;

Trigka, M.; Constantinopoulos, C.;

Kosmopoulos, D. Context-Aware

Automatic Sign Language Video

Transcription in Psychiatric

Interviews. Sensors 2022, 22, 2656.

https://doi.org/10.3390/s22072656

Academic Editors: Tomasz

Kapuscinski, Kosmas Dimitropoulos

and Marian Wysocki

Received: 23 February 2022

Accepted: 26 March 2022

Published: 30 March 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

sensors

Article

Context-Aware Automatic Sign Language Video Transcription
in Psychiatric Interviews †

Erion-Vasilis Pikoulis , Aristeidis Bifis , Maria Trigka * , Constantinos Constantinopoulos
and Dimitrios Kosmopoulos

Computer Engineering and Informatics Department, University of Patras, 26504 Patras, Greece;
pikoulis@ceid.upatras.gr (E.-V.P.); bifis@ceid.upatras.gr (A.B.); kkonstantino@upatras.gr (C.C.);
dkosmo@upatras.gr (D.K.)
* Correspondence: trigka@ceid.upatras.gr
† This paper is an extended version of our paper published in A Hierarchical Ontology for Dialogue Acts in

Psychiatric Interviews. In Proceedings of the ACM International Conference on PErvasive Technologies
Related to Assistive Environments (PETRA), Corfu, Greece, 29 June–2 July 2021.

Abstract: Sign language (SL) translation constitutes an extremely challenging task when undertaken
in a general unconstrained setup, especially in the absence of vast training datasets that enable the
use of end-to-end solutions employing deep architectures. In such cases, the ability to incorporate
prior information can yield a significant improvement in the translation results by greatly restricting
the search space of the potential solutions. In this work, we treat the translation problem in the
limited confines of psychiatric interviews involving doctor-patient diagnostic sessions for deaf and
hard of hearing patients with mental health problems.To overcome the lack of extensive training
data and be able to improve the obtained translation performance, we follow a domain-specific
approach combining data-driven feature extraction with the incorporation of prior information
drawn from the available domain knowledge. This knowledge enables us to model the context of
the interviews by using an appropriately defined hierarchical ontology for the contained dialogue,
allowing for the classification of the current state of the interview, based on the doctor’s question.
Utilizing this information, video transcription is treated as a sentence retrieval problem. The goal is
predicting the patient’s sentence that has been signed in the SL video based on the available pool of
possible responses, given the context of the current exchange. Our experimental evaluation using
simulated scenarios of psychiatric interviews demonstrate the significant gains of incorporating
context awareness in the system’s decisions.

Keywords: sign language recognition; sign language datasets; machine learning

1. Introduction

The Deaf (with a capital D) are defined as a group of people with varying hearing
acuity, whose primary mode of communication is a visual language, predominantly sign
language (SL), and who have a shared heritage and culture. There are 70 million deaf
and hard of hearing people worldwide, and more than 200 officially recognized national
sign languages [1]. Unfortunately, most Deaf are not able to use their native SLs in their
interactions with the non-Deaf, instead being limited to other communication methods such
as writing or texting. However, most Deaf prefer to express themselves in their native SLs
and often avoid using writing/reading due to their rather poor written language skills [2].
The situation is worsened by the scarcity of dedicated SL interpreters who could help
alleviate the issue, especially in critical situations (e.g., health services, court, etc.) via their
live presence or through relay services. For example, it is estimated that in the European
Union, there are only 12,000 registered interpreters serving more than 750,000 deaf SL
users [3]. This is indicative of the many communication barriers that exist for deaf SL users.
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To help mitigate the problem, automated translation systems are gaining both in
popularity and in performance, especially since the advent and widespread use of deep
neural networks. However, despite the progress, automatic SL translation (SLT) remains
an open and extremely challenging task, particularly when attempted under a general
unconstrained framework, whose treatment requires an interdisciplinary approach involv-
ing linguistics for identifying the structures of SL; natural language processing (NLP) and
machine translation (MT) for modeling, analyzing, and translating; and computer vision
for detecting signed content [4].

It must be stressed that even at the level of individual sign recognition, SL translation
presents itself with a number of difficulties due to the fact that each sign is expressed via a
multitude of information streams involving hand shapes and facial expressions (including
eyebrows, mouth, head, and eye gaze) as well as secondary streams such as, e.g., the
movement of shoulders [5]. Adding to the problem is the extensive use of depiction, namely
using the body to depict actions, dialogues, or psychological events [6], which occurs very
frequently in SL. Taking into account that (in direct analogy to spoken languages) a real-
world translation system requires continuous SL recognition (i.e., translating a continuous
stream of signs) [7], which is further complicated by epenthetic effects (insertion of extra
features into signs), coarticulation (the ending of one sign affecting the start of the next),
and spontaneous sign production (which may include slang, nonuniform speed, etc.), the
sheer magnitude of the problem becomes readily apparent [8].

Recent methods based on networks with self-attention (transformers) [9,10], which
currently represent the state-of-the-art in SLT, have yielded promising results owing to
their ability to learn without depending too much on expert knowledge. Nevertheless, to
fully unleash their performance and generalization potential, such systems require large
corpora for training, which increase with the size of the vocabulary. This is a well-known
issue faced by all data-driven approaches based on deep learning regardless of application.
However, contrary to other domains such as speech processing that are endowed with
almost unlimited training data, the issue becomes especially critical in the context of
SLT, where there is a profound lack of annotated data for supervised training because
of the very complicated language structures that SLs entail and also because almost all
SLs are minority languages. As a result, the currently available SL benchmarks such as
the PHOENIX-2014 [11] and the SIGNUM [12] datasets are several orders of magnitude
smaller than similarly defined speech-related corpora [4], which drastically restricts the
generalization capability of models for unseen situations/signers.

In this work, we maintain that the complexity of the translation task, combined
with data scarcity, necessitates encoding and utilizing all a priori available knowledge,
given that generating large annotated SL datasets can be extremely time-consuming and
expensive. This prior information includes linguistic structures and/or domains and
context knowledge and can be incorporated in the form of constraints that guide the
solution by effectively limiting the required search space.The highlights of this paper can
be summarized as follows:

• We present an SL translation framework aimed at enhancing the mental health ser-
vices provided to deaf or hard of hearing people by facilitating the communication
between health professionals and deaf patients suffering from anxiety disorders, stress,
and depression.

• We propose a domain-specific solution combining data-driven feature extraction
(using the deep-learning-based MediaPipe [13] tool) with the encoding and utilization
of a priori information stemming from the available domain knowledge to combat the
lack of extensive training datasets.

• The knowledge regarding the vocabulary used, as well as the flow and structure of
information (which is dictated by the format of a doctor-patient dialogue), enables us
to define a suitable hierarchical ontology (first proposed in our previous work [14],
and presented here in Section 4). We can then combine this ontology with a set of
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classification approaches in order to model the context of the exchange by labeling the
the dialogue acts that take place during the interview.

• The translation task itself is treated as a sentence retrieval problem whereby the
problem is reduced to identifying the known response that best matches the unknown
one given the context of the dialogue.

• Our experiments are conducted using an in-house-created dataset consisting of 21 sim-
ulated psychiatric interviews, each of them signed by a combination of (8) native and
experienced users of the Greek sign language (GSL).

This paper is structured as follows. In Section 2, we present some of the most impor-
tant recent works in the field of SL translation/recognition. In Section 3, we introduce
the framework of the psychiatric interviews used in this paper. In Sections 4 and 5, we
present in detail the proposed techniques for context modeling and context-aware sentence
recognition, respectively, while our experimental results are presented in Section 6. In
Section 7, we hold a brief discussion regarding the highlights and shortcomings of the
proposed work, and finally, Section 8 contains our conclusions.

2. Related Work

Sign language translation has been commonly regarded as a recognition problem
(see [15,16] for details). Early approaches attempted to recognize individual and well-
segmented signs by employing discriminative or generative methods within a time-series
classification framework; examples include hidden Markov models (HMMs), e.g., [17–19],
dynamic time warping, e.g., [20,21], and conditional random fields, e.g., [22,23]. These
methods used handcrafted features; more recently, deep learning methods such as those
derived from CNNs, provided some superior representations, e.g., [24,25].

The recognition approach, however, has rather limited real-world utility because it
produces a group of words with relatively nonsensical context structure rather than a
natural language output. As a result, SLT with continuous recognition is a much more
realistic framework, but it is also far more difficult to implement [8,26,27]. The difficulty
stems from epenthesis (the incorporation of extra visual clues into signs), coarticulation (the
conclusion of one sign affects the beginning of the next), and spontaneous sign generation
(which may include slang, special expressions, etc.). In [28], the authors used a model
comprised of a CNN-LSTM network to produce features, which were then fed to HMMs
that provided inference using a variation of the Viterbi method to handle the challenge.
A 2D-CNN with cascaded 1D convolutional layers for feature extraction was proposed
in [29], also using a bidirectional LSTM (BLSTM) for continuous SL recognition, and
utilizing the Levenshtein distance to produce gloss-level alignments. Along the same lines,
the authors in [30], combined a 2D fully convolutional network with a feature enhancement
module to obtain better gloss alignments. In [31], the authors employed a BLSTM fed with
CNN features, while [32] utilized an adaptive encoder-decoder architecture leveraging a
hierarchical BLSTM with attention over sliding windows on the decoder. A network called
STMC was proposed in [33], which incorporated several cues from position and picture
(hands, face, holistic) in multiple scales and fed them to a CTC penultimate layer.

The recently proposed Transformer architectures enable SLT to drastically enhance
translation performance. This is amplified when SLT is combined with an SLR proce-
dure, either as an intermediate activity or in the context of a multitask learning scheme.
In particular, in [9], the authors used a Transformer network to achieve end-to-end transla-
tion. They essentially suggested an S2(G+T) architecture. They proposed a Transformer
network to conduct S2T, and they used the Transformer’s encoder to forecast the respec-
tive gloss sequence ground-truth. The latter SLR task was carried out over all potential
gloss alignments by a penultimate connectionist temporal classification (CTC) layer [34].
Training was performed collaboratively for the entire system (both tasks). The need for
that intermediate step has been alleviated in later works such as [10], where a winner-
takes-all activation is integrated into the Transformer architecture. In [35], the authors
introduced a context-aware continuous sign language recognition using a generative adver-



Sensors 2022, 22, 2656 4 of 17

sarial network architecture. The elaborated system exploits text or contextual information
to enhance the recognition accuracy, in contrast to previous works that only considered
spatio-temporal features from video sequences. In particular, it recognizes sign language
glosses by extracting these features and assessing the prediction quality by modeling text
information at the sentence and gloss levels.

Despite the aforementioned developments, such works still face issues in more com-
plex real-world scenarios, mainly due to the lack of available data. They are most often
implemented on small dictionaries relevant to certain real-world contexts for which very
labor-intensive annotation has taken place, e.g., weather reports [11]. The question is how
to use these advancements in real scenarios when not enough training data is available,
but the structure of the conversation is more or less known, e.g., by following a protocol
that can be modeled to a certain extent a priori. To our knowledge, there has been no such
effort in the related literature for the SLT. This work aspires to contribute toward bridging
this gap.

3. The Case of Psychiatric Interviews

Anxiety disorders, stress, and depression are quite common in the general population.
They are associated with the modern way of life and often cause significant reduction
in the individual’s functionality, resulting in notable burdens on health systems. Due to
the close relationship and coexistence of anxiety and depressive disorders with physical
ailments (either as a cause or as a consequence), the individual’s ability to access mental
health services and the provision of appropriate psychiatric treatment are crucial factors
in the control and prognosis of anxiety and depressive disorders. A prerequisite for the
proper treatment of each individual is the collection of a detailed patient record through a
psychiatric interview, which leads to appropriate diagnosis and treatment [36–38].

The test case that we examine in this paper regards psychiatric interviews, with the
goal of developing a service that can yield real-time interpretations and facilitate doctor-
patient communication. It has been selected due to its high impact and due to the structured
approach that is commonly followed by doctors.

To achieve this goal, we modeled the context of the doctor-patient dialogues based on a
hierarchy of dialogue acts (DA) [39], and we predict the expected vocabulary of the patient’s
response to optimize the SL-to-text translation process. The task of SL-to-text translation
is very challenging and typically requires computations over large vocabularies. Our
approach aims to increase the quality of the translation by assigning greater probabilities
to certain vocabulary terms, given the current context of the interview.

The dataset used for training/testing purposes consisted of simulated scenarios rep-
resenting realistic interactions between mental health professionals and deaf patients suf-
fering from anxiety disorders, stress, and depression. The scenarios were developed with
the help of two professional psychiatrists. However, no actual human subjects (patients)
were involved in creating the dataset. More specifically, the corpus contains 21 recorded
scripts in the Greek language (GL), each of them signed by 8 users of Greek Sign Language
(GSL). Of the users, 6 were native signers while 2 were experienced interpreters. It includes
1029 simple sentences with 945 of them being unique (excluding repetitions). Furthermore,
the GL vocabulary includes 1374 unique words, while the total number of words is 6319.
Hence, the average length of a sentence is 6.1 words. The words form 3558 unique 2-grams,
3841 unique 3-grams, and 3292 unique 4-grams. Moreover, the GSL vocabulary contains
806 unique glosses, while the complete corpus contains 2619 glosses. The average length
of a sentence is 3.9 glosses. Finally, the glosses form 1666 unique 2-grams, 1337 unique
3-grams, and 870 unique 4-grams. Further details on the dataset can be found in [40].

4. Hierarchical Classification of Doctor–Patient Dialogue Acts

In this section, we present a technique for doctor–patient dialogue modeling using a
corpus of realistic scenarios for psychiatric interviews. To this end, we define a suitable
ontology and propose a hierarchical classification scheme that accepts as input the doctor’s
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query and predicts the class to which the query belongs. Our aim is to create a complete
system such as the one depicted in Figure 1. The system consists of several submodules,
including a classifier to predict the topics of discussion and in turn select the appropriate
prior for the expected vocabulary, and an SL-to-text translation network that utilizes this
prior. When used in the context of a psychiatric session, the system can take the doctor’s
query as input (using a speech-to-text tool) and feed it to the trained classifier to produce
the predicted label/topic of discussion. This prediction is used to select the appropriate
prior for the vocabulary terms to be translated. The patient response to the doctor, in
the form of a SL video segment, is then given as input to the SL-to-text system, which
incorporates the prior information to produce the translation. To train our classifiers and
generate the term priors for each label/topic, we utilized the available dataset of realistic
psychiatric interviews. The contained sentences were first preprocessed and then annotated
using the topics defined in the proposed ontology. The latter takes the form of a directed
acyclic graph (DAG) with the purpose of modeling the hierarchy of the topics typically
found in a psychiatric interview. Finally the vocabulary of each label topic was formed
based on the annotation, which was used as a way to generate the vocabulary term priors.

"How is your sleep ?"

D
A classifier

Prior R
etrieval 

"symptoms"

.

.

.
 HOUSE:  0.003
 STRESS:  0.13
 PAIN:     0.09
 HEART:   0.11
 PILL:       0.03 
 HEAD:    0.08 
 BOOK:  0.0006

.

.

. 

"I wake up tired every morning"

.

.

.
 I have 2 children   
 My husband is an engineer  
 I get a lot of headaches:  0.01
 Good morning 
 The pill helps:     0.03
 I am tired in the morning:   0.23
 I exercise every morning
 I am tired when I wake up: 0.25 
 I am very stressed: 0.13 
 My stomach hurts: 0.05  

.

.

. 

 1. MORNING:  0.33
 2. I:  0.21
 3. TIRED:     0.15
 4. SLEEPY:    0.11
 5. WAKE UP:    0.11 
 6. HEAD:    0.03 

 .
.
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Sentence
 Retrieval
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Training

Prior  
Generation

Figure 1. Architectural overview of the proposed framework. The dashed arrows represent the parts
of the system that are currently under development.
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4.1. Dialogue Context

The task of assigning context to the parts of a dialogue is known as dialogue acts (DA)
classification, e.g., [41–43]. The dialogue acts are essentially labels that characterize the
type of exchange that is taking place, e.g., asking, refusing, giving directives, etc. More
specifically, assuming a set C = {C1, C2, . . . , CN} of N dialogues, each consisting of a
sequence of utterances (namely, sentences), i.e., Ci = {u1, u2, . . . , uNi}, and a set of M
dialogue acts (labels) Y = {y1, y2, . . . , yM}, the goal of the DA classification is to assign a
label from Y to each utterance in C. Since we are interested in describing the context of an
interview in more detail than the typical cases found in the literature, employing a set of
generic DAs that could be used for everyday dialogues would not suffice for our purpose.
To this end, after careful examination of the available collection of interviews, we propose
the hierarchical ontology depicted in Figure 2 for the DAs found in our corpus.

Figure 2. The proposed hierarchical ontology for labeling the parts of a psychiatric interview.
Reprinted with permission from [14]. Copyright 2021 Association for Computing Machinery (ACM).

The proposed ontology comes in the form of a directed acyclic graph (DAG), with
stress & depression at its root, while the children DAs correspond to the main sections of
each interview, namely opening, probing, and closing. Probing is in turn branching out to:
purpose of visit, psychiatric record, nonpsychiatric record, social life record, family record,
and so on. The fully expanded graph has 30 terminal nodes that correspond to the most
detailed DAs (see Figure 2). The proposed ontology is the result of careful analysis on
the available dataset, consisting of realistic doctor–patient dialogue sessions. The leaves
of the ontology represent the relevant topics that are discussed, typically found in such
sessions guided by the psychiatrist. The structure depicted in Figure 2 showcases the
interconnection between the topics within the context of the domain. Every node in the
graph represents a subset of topics that form the node’s parents. We consider the root node
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“stress and depression” as the superset and the leaf labels as singletons. The ontology’s
primary purpose is to assist the hierarchical classification process which is presented in the
following sections in detail.

Equipped with the DA graph, we assigned one leaf label to each question of the
psychiatrist in our corpus. Noting that a psychiatric interview has a rather strict structure
guided by the questions of the psychiatrist, we avoided explicitly classifying the patient’s
responses and assumed that the DA of the patient’s response is determined by the preceding
question. An example of DA classification containing an annotated excerpt from our corpus,
is shown in Table 1.

Table 1. An example of annotated interview between doctor (D) and patient (P). The original dialogue
is in Greek, and it has been translated by software for illustrative purposes. Reprinted with permission
from [14]. Copyright 2021 Association for Computing Machinery (ACM).

Speaker Dialogue Act Utterance (Original in Greek) Utterance (Translation)

D symptoms Πώς είναι ο ύπνος σας; How is your sleep?

P Τώρα με το χάπι είναι καλός.
Now with the pill it
is good.

P Ξυπνάω ξεκούραστη. I wake up relaxed.

P
Πριν όμως να πάρω το χάπι,

ξυπνούσα πολλές φορές μέσα

στη νύχτα.

But before I took the pill, I
woke up several times
during the night.

D past diagnosis Προβλήματα υγείας γνωστά

υπάρχουν;

Are there known health
problems?

P Μόνο χοληστερίνη έχω

ανεβασμένη.

I only have high
cholesterol.

P Παίρνω φάρμακο. I take a medicine.

D past diagnosis

Γνωρίζετε αν συγγενείς σας

πρώτου βαθμού είχαν

προβλήματα με το άγχος ή με

άλλες ψυχικές παθήσεις;

Do you know if your
first-degree relatives had
problems with stress or
other mental illnesses?

P
Μόνο η μητέρα μου ήταν

αγχώδης ακριβώς σαν κι

εμένα.

Only my mother was
anxious just like me.

In the following subsection, we present the proposed methodology for classifying new
questions. It consists of three main stages, namely, data preprocessing, feature extraction,
and classification.

4.2. Data Preprocessing

The main preprocessing steps on the available interviews are the following. First, we
organized the sentences (namely, the utterances ui) of all scripts into two types of DAs, i.e.,
doctor queries and patient responses. All sentences were originally recorded in Greek and
then translated to English using machine translation software.

Then, we annotated all sentences (both the queries and the responses) with a label
that best describes the context of the corresponding DA according to the ontology labels
shown in Figure 2. By annotating all the query–response DAs, several groups of sentences
for each DA were derived. Such knowledge gives us an insight on the per-class vocabulary
prior and will be exploited in the SL-to-text translation process.

4.3. Sentence Embeddings

Following the preprocessing step, the doctor’s sentences were suitably transformed to
facilitate our classification goal utilizing the representation power of deep neural networks.
To this end, we employed Sentence-BERT (SBERT) [44], namely a modification of the
pretrained BERT network [45] that uses siamese and triplet network structures to derive
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semantically meaningful sentence embeddings. Specifically, we used the stsb-bert-base
model from the SentenceTransformers framework based on PyTorch and Transformers to
translate each varying-length sentence into a vector representation of size 768.

4.4. Classification

The classification module associates an unknown query to one or more members
from a predefined set of classes according to its attributes. We experimented with two
classification schemes, one hierarchical and one flat. In both cases, the classification was
based on the 768-dimensional SBERT feature vector representation of the query.

In the flat classification scheme, there is no utilization of the interview structure. In this
approach, every query is classified to the appropriate label based on the distance between
its SBERT representation and the representations of each class member . Due to the limited
number of samples for training, we resorted to a modified version of a k-Nearest Neighbors
classifier to perform this classification.

The hierarchical classification scheme [46] exploits the relationships among the classes
and organizes them into a hierarchy of levels according to the DAG structure of the
proposed ontology shown in Figure 2 (for further details the reader is referred to [14]):

We trained one classifier per class, following a top-down approach, where a given
decision leads us down a different classification path. To better understand how hierarchical
classification operates, it is necessary to think of a hierarchical classifier as a tree. Every
node of the tree (except for the leaves) is a standalone classifier that classifies a query to
one of its child nodes. Thus, to train each node-classifier, we need to split the training data
into subsets based on the node’s children. To this end, from all the training data, we select
the set that contains all the sentences belonging to class labels (leaves) that are reachable
from the particular node-classifier. Then, we further partition this set into subsets (one
per each of the node’s children), each containing the sentences that belong to leaves that
are reachable from a particular child of the node. Doing this for all the nodes, results in a
system that can hierarchically classify a query. Each query starts at the root and follows a
classification trail on our tree all the way down to a leaf.

The classification process of a new sentence query is summarized in Algorithm 1,
whereby two core functions can be discerned. The first one, namely mean_distance() ,
takes as input the SBERT vector representations of the node sentences and the new query.
It then calculates the mean euclidean distance between the query vector and the vectors
of each of the node’s children. On the other hand, child_with_min_distance_from(),
accepts a dictionary with the names of the children nodes as keys and the mean distances as
values. It returns the key (child name to be used as index) with the minimum distance value.

Algorithm 1 Hierarchical Classification

procedure CLASSIFY(query)
index ← root_node
while index not lea f do

distances← {}
for child← children(index) do

sentences← sentences_o f (child)
distances(child)← mean_distance(sentences, query)

end for
index ← child_with_min_distance_ f rom(distances)

end while
label ← index
return label

end procedure

Although a node may be reached from different paths, the goal of the classifier is to
output the correct class label, irrespective of the path followed, in the specific problem.
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During the interview process, when a new doctor query occurs, it is passed through the
trained hierarchical classifier to produce the appropriate label. This information is vital
since, due to the nature of the interviews, we can make a strong assumption that the patient
response will belong to the same class as the one assigned to the doctor query. By predicting
the response’s label, we have a straightforward solution to acquire prior knowledge that
will be used later on in the SL translation process.

5. Context-Aware SL Sentence Recognition

In this section, we present an SL-sentence recognition system on the HealthSign
dataset using the dialogue act classification tool described previously. The general idea
behind the proposed system is to infer the dialogue–act class of the doctor’s query using
the classification scheme presented in Section 4, and then utilize this prior knowledge to
facilitate the automatic recognition of the patient’s response. Despite its simplicity, the
presented system is capable of achieving promising accuracy levels. This can showcase the
importance of incorporating prior knowledge toward facilitating the solution of extremely
complicated problems such as the automatic interpretation of SL videos.

Due to the rather limited size of the dataset, we pursued a nondeep treatment of
the problem, involving feature extraction and statistical modeling. Specifically, we first
extracted hand-related features from each video frame, and subsequently we clustered
the feature vectors to translate the sentence video into a sequence of latent hand-shapes.
Finally, we eliminated the time parameter, borrowing concepts from document-processing
techniques. The recognition task was performed by simply assigning the unknown test
sentence to its closest neighbor from the (known) sentences in the training corpus. In the
subsequent subsections, we describe each of the involved steps in detail.

5.1. Feature Extraction

The first processing step in the proposed pipeline involved passing the SL videos
though the “Hands” module of Mepiapipe ([13,47]) to infer hand-landmark locations.
Specifically, the MediaPipe Hands tool estimated 21 3D landmarks per hand for each video
frame. Using these hand landmarks, we calculated the (15) fingertip distances correspond-
ing to the signer’s dominant hand, while subsequently, the resulting distance vector was
normalized. Thus, by following this procedure, we extracted a rotation-, translation-, and
scale-invariant hand-related feature vector for each video frame of the available SL videos.

5.2. Sentence Modeling

As a dimensionality reduction step, we used our training data to estimate latent
hand shapes by grouping the Nframes feature vectors of the dataset into a small number
of k clusters with k � Nframes. We anticipated the cluster centroids to represent the
fundamental hand shapes that were present in our collection of SL videos (allowing also
for transitional frames).

To model our SL sentence videos, we assigned each video frame to the cluster to which
its corresponding feature vector belonged, thus transforming SL videos into a sequence
of latent hand shapes (namely, cluster labels). In other words, the i-th sentence of the
dataset, i = 1, . . . , Nsentences, was translated into a sequence l1, l2, . . . , lNi

frames
, lj ∈ {1, . . . , k},

where Ni
frames is the number of frames in the i-th sentence’s video. In order to assess the

similarity between SL sentences, we must take into account that SL sentence videos of
the same sentence may have different lengths, and even more importantly, that the same
sentence may be signed in many different ways (e.g., by altering the order of the contained
glosses). To overcome this obstacle, we modeled each sentence via the histogram of the
latent hand shapes that are present in it. To be more specific, sentence si was modeled via
the k-dimensional vector hi, defined as:

hi ≡
[

f i
1, f i

2, . . . , f i
k

]T
, (1)
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where

f i
j =

ni
j

Ni
frames

, (2)

with ni
j denoting the number of appearances of the j-th latent hand shape in the SL video

of the i-th sentence. Note that in the context of information retrieval, the histogram
defined in (1) corresponds to a bag-of-words [48] model, with the sentences representing
“documents” and the latent handshapes, the “words” that comprise them. We are going
to use this analogy again in the subsequent section, where we define the distance metrics
used in our experiments for sentence comparison.

5.3. Quantifying Sentence Similarity

Using the bag-of-words sentence modeling, we can define a simple sentence recogni-
tion system that assigns the unknown test sentence s̃ to its closest neighbor si∗ in the training
dataset. In this subsection, we define the various distance metrics used for quantifying the
similarity between sentence pairs.

5.3.1. Sentence Distance Using Residual Norm

Considering the hand shape histograms of each SL sentence as vectors in k-dimensional
space (where k denotes the number of clusters), we can define distance metrics between the
test sentence s̃ and the i-th sentence in the training dataset, in the form of Lp-norms of the
residual h̃− hi between the corresponding histograms, i.e.,:

Dp(s̃, si) ≡ ||h̃− hi||p. (3)

In our experiments we examined the L1, L2, and L∞ norms for our classification task,
reflecting the mean, mean squared, and maximum values, respectively, of the absolute
differences

∣∣ f̃l − f i
l

∣∣, l = 1, . . . , k, where f̃l , f i
l denote the frequency of the l-th hand shape

(label) in the test sentence, and i-th train sentence, respectively.

5.3.2. Distance of Pdfs Using Komogorov–Smirnov Statistic

Viewing histogram hi as the empirical conditional pdf of the hand shapes, given that
the sentence si has been signed in the SL video, we can use statistical tools such as the
Kolmogorov–Smirnov (KS) statistic [49] that quantifies the distance between the underlying
distributions. Specifically, the used KS statistic measures the maximum distance between
the cumulative distribution functions of two samples, and in our case can be defined
as follows:

DKS(s̃, si) ≡ max
n

∣∣∣∣∣ n

∑
l=1

f̃l −
n

∑
l=1

f i
l

∣∣∣∣∣. (4)

5.3.3. Document Similarity Using tf-idf

The term frequency–inverse document frequency (tf-idf) is a statistic aiming at quan-
tifying the importance of each word (loosely speaking, the amount of information they
carry) in the documents of a corpus [50]. The tf-idf reflects the following general idea:
the more concentrated the occurrences of a word in the documents of the corpus, the
more relevant the word is for identifying the documents in which it appears. Words that
appear frequently only in a limited subset of the collection are relevant to the topic of
that particular subset (e.g., words such as “car”, “moon”, “fire”, etc.), while words that
appear ubiquitously throughout the collection are generally irrelevant to the meaning of
the documents (e.g., “the”, “and”, “with”, etc.).

In our case, considering the sentences as “documents” comprising the hand-shape-
label “terms”, the tf-idf statistic for a label-sentence pair (l, si), can be defined as follows:

tf-idf(l, si) = f i
l × log

(
|S|

|s ∈ S : l ∈ s|

)
, (5)
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where S denotes the sentence corpus, | · | denotes cardinality, while the term-frequency
component f i

l is defined in (2). Viewing the test sentence as an unknown “document”, we
use the tf-idf statistic as a weighting factor to quantify its relevance to the sentences of the
training corpus via the following dissimilarity metric:

Dtf-idf(s̃, si) ≡ −
k

∑
l=1

tf-idf(l, si) f̃l (6)

Dtf-idf(s̃, si) takes small values (denoting strong similarity) when labels occurring
frequently in the test sentence s̃ are also highly relevant to the training sentence si (namely
labels with high tf-idf values).

5.3.4. LSA

Latent semantic analysis (LSA) is a well-known technique used in natural language
processing and information retrieval for mapping high-dimensional document representa-
tions to a vector space of reduced dimensionality, called the latent semantic space [51]. The
aim of LSA is to find a representation so that terms having a common meaning are roughly
mapped to the same direction in the latent space. By revealing the semantic relationship
between the involved entities, LSA can lead to meaningful association between pairs of
documents, even if at a lexical level, they are totally different [52].

In our experiments, we use LSA to compare the sentences in the lower dimensional
latent space. To this end, we first obtain the representation of the training corpus in the
latent space via the SVD decomposition of the co-occurrence matrix H = [h1, h1, . . . hN ],
with hi denoting the bag-of-words representations defined in (1), where N is the number of
training sentences, as H = UΣVT. Then by setting all but the m largest singular values in Σ
to 0, we obtain the lower dimensional mapping of the training corpus as

Hm = Um ΣmVT
m, (7)

where Um, Σm, Vm are of dimensions k×m, m×m, N ×m, respectively. In this mapping,
the columns of ΣmVT

m correspond to the sentence representations in the latent space. To com-
pare the test sentence to the ones in the training dataset, we first obtain its m-dimensional
latent representation as s̃ = UT

m h̃, and then calculate the following metric:

DLSA(s̃, si) ≡ 1−
sT

i s̃
||si|| ||s̃||

, (8)

where si denotes the i-th column of ΣmVT
m.

6. Experiments

In this section, we present the experimental evaluation of the proposed dialogue
act classification and sentence recognition system on the HealthSign dataset comprising
simulated psychiatric interviews for deaf and HoH patients.

6.1. Experiment I: Evaluating the Hierarchical Classification of Dialogue Acts

In the first experiment, the classification techniques described in Section 4 were evalu-
ated in terms of accuracy, using the available dataset. Although the dataset consisted of
both doctor and patient sentences, as discussed in Section 4, here we focused on doctor
sentences. For an unbiased evaluation of the classification accuracy, we considered only the
unique sentences in the classification schemes, omitting repetitions that occur among the
conversation scripts. Specifically, the dataset comprised 430 unique doctor sentences dis-
tributed into 25 classes. Since the training data size was relatively small and each class had
a varying nonbalanced number of sentences, we adopted a leave-one-out cross-validation
(LOOCV) strategy for our evaluation.
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The chance level was estimated at 27% since the class symptoms, which was the largest
in the dataset, contained 116 out of 430 unique sentences (27% of our dataset). In this sense,
both the classification schemes were way above chance level. The flat classification scheme,
using a value of k = 15 for our k-NN classifier, achieved an accuracy of 54.4%, while
the accuracy of the hierarchical classification amounted to 60.9%. Thus, the experimental
results revealed a performance gap of 6.5% between the hierarchical classification scheme
and its flat rival. Deeper analysis into our results also revealed that sentences with similar
vocabulary led the classifiers to misclassify them to neighboring classes, as illustrated by
the confusion matrices shown in Figure 3.

Flat Hierarchical

Figure 3. Confusion matrices of the flat (left) and hierarchical (right) classifiers. Reprinted with
permission from [14]. Copyright 2021 Association for Computing Machinery (ACM).

6.2. Experiment II: Evaluating the Context-Aware Sentence Recognition System

The aim of this experiment was to assess the accuracy of the proposed method using
a sentence recognition system and to assess the impact of incorporating prior knowledge
in our solution. To this end, we used a dataset of 144 annotated SL videos consisting of 8
signers enacting 18 simulated scenarios. For evaluation purposes, we followed a LOOCV
strategy, whereby we used the sentences of a particular signer as a testing set and the
sentences of the remaining signers as the training set. We repeated this procedure for all
eight available signers. The distribution of the training/testing dataset sizes (in number
of sentences) is shown in Table 2. As it can be observed, we had in average an 88–12%
split of the dataset, with the small variations being attributed to the different way used
by each signer to sign the scenario sentences, as well as small discrepancies in the video
annotation process. In this setup, as prior knowledge, we considered the true topic labels
of the patient sentences as a way to showcase the full potential of such a retrieval system
that incorporated a priori information.

Table 2. Distribution between training and testing datasets in our experiments.

Signer used for testing 1 2 3 4 5 6 7 8

Size of training dataset 4227 4248 4253 4240 4238 4247 4245 4245

Size of testing dataset 622 601 596 609 611 602 604 604

6.3. Results

As mentioned in Section 5, the sentence recognition task was performed by assigning
the unknown sentence to its closest neighbor in the training set via the minimization of a
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preselected dissimilarity metric. When the prior knowledge was used, namely when the
unknown sentence had been assigned the dialogue–act class inferred from the preceding
doctor query, the search space included only training sentences that belonged to the same
class. In our evaluation, we used the six metrics presented in Section 5.3, and experimented
with k values (i.e., number of clusters/latent hand shapes) in the range [50, 150], with the
best results being obtained for k = 125. Furthermore, the dimension of the latent space for
the LSA-based metric was set to m = 50 after experimentation. The results obtained for
the six used metrics and for k = 125 are summarized in Figure 4. As it becomes readily
apparent, the use of D1 led to the best overall system performance, with a safe margin from
the D2 and DLSA which was very close in performance at the second place. On the other
hand, the DKS and Dtf-idf metrics performed rather poorly in our system.
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Figure 4. System evaluation via the LOOCV strategy using the six metrics defined in Section 5.3. In
all cases, the number of clusters (latent hand shapes) was equal to k = 125, while the dimension of
the latent space for DLSA was set to m = 50.
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The fact that the incorporation of the dialogue context in the solution of the sentence
retrieval task significantly boosted performance by more than 20% in most cases, regardless
of the metric used, underlines the benefits of utilizing prior information when dealing with
challenging problems such as the one at hand.

In absolute terms, the combination of the D1 metric with the incorporation of the
dialogue context led to an accuracy between 60% and 70% (with the exception of signer
five), reaching a peak performance of around 72%. For completeness, in Figure 5 we also
present the top three accuracy of the D1-based system (i.e., measuring the probability of the
test sentence to be correctly identified to one of its three nearest neighbors in the training
dataset). As is to be expected, the top-3 results significantly exceed the top-1 accuracy
shown in Figure 4, reaching very satisfactory values of around 80% and 90% regarding the
mean and peak performance, respectively.

1 2 3 4 5 6 7 8
test signer

0.0

0.2

0.4

0.6

0.8

ac
cu

ra
cy

w/o context
with context

Figure 5. Top-3 accuracy using D1 as the distance metric, for k = 125.

7. Discussion

The research presented in this manuscript is part of our ongoing efforts toward SL
translation. Given the complexity of the task, a domain-specific approach appears to be
meaningful. Based on this principle, we have worked toward an SL translation system
to enhance the existing services and help mental health professionals and other clinicians
effectively perform a psychiatric evaluation and treat deaf or hard of hearing people.

On a technical level, due to the challenging nature of the problem, purely data-driven
methods will require huge amounts of annotated data to capture the basic scenarios. On
the other hand, the combination of data-driven information extraction with the encoding
and utilization of a priori available knowledge, including linguistic structures as well as
domain and context knowledge appears to be promising.

The confinement of psychiatric interviews involving dialogues between (nondeaf)
doctors and (deaf) patients offers itself as a domain-specific approach due to its structure
based on medical protocols. The domain knowledge by classifying the doctor’s queries
in terms of the information they are seeking from the patient, can be captured using
a hierarchical ontology. This classification appears to be able to provide useful prior
information on the anticipated response from the patient and can be utilized as part of the
proposed SL translation system as a sentence retrieval problem.

The system performance becomes significantly better when we incorporate prior
knowledge. The challenge appears to be how to capture this knowledge into the system’s
knowledge base in more general settings. That requirement may limit its real-world
usability, but on the other hand, it seems a feasible alternative to the most difficult data
collection and annotation. That alternative becomes attractive, especially when we have to
deal with domains entailing structured scenarios.

At a technical level, a source of errors in the proposed pipeline is the feature extraction
module since the landmark-based features from hand tracking may not always give correct
results in realistic conditions. Another point of concern is that there can be a population



Sensors 2022, 22, 2656 15 of 17

imbalance in the classes of the proposed DA classifier, with certain classes being much more
present in the corpus than others. In particular, the classes that relate to symptoms, habits,
impact, family life are the most frequently occurring in the interview scripts. Other classes,
with occurrence in the range [2%, 7%] are past diagnosis/outcomes/exams/prescription,
duration, job status, past side effects, addictions record, referral, housing, prescription,
while marital status, guidance, childhood, age, greetings, diagnosis, school years, past
operation, name, outcome, exams are very rare occupying a small percentage of the total
data (lower than 1%).

The presented framework is a work in progress that we are gradually but constantly
improving both on the front of the collected data and on the front of its SL translation
capabilities. Regarding the data, we are currently in the process of significantly expanding
and improving our corpus by including several new scenarios and signers and by enhancing
our annotation mechanism. On the technical side, we are working toward an enhanced and
refined version of the proposed ontology. Focusing on hierarchical classifier’s confusion
matrix (right panel of Figure 3), the classification errors dictate the internal nodes in the
hierarchy that could be considered as a unity, simplifying the ontology and enhancing
the classification outcome. We observe that there are DAs that share a common path in
the graph, and the classification error occurs at the bottom of the hierarchy (leaf nodes).
From this observation, we have identified classes in the leaf nodes whose corresponding
vocabularies are common and thus could be merged.

Finally, a translation system based on SL recognition is currently under development.
The system aims to predict the likelihood of a gloss being present in the patient’s response,
given the feature representation of the SL video and the prior PDF of the glosses produced
by the DA classification of the doctor’s query. We are also anticipating that the extended
dataset will allow for more elaborate schemes for feature extraction such as the use of
convolutional neural networks and autoencoders, as well as modeling and fusing additional
information streams from the signers’ hand trajectories, and facial expressions that add
punctuation information to the feature set.

8. Conclusions

In this work, we presented a system for the automatic retrieval of a patient’s response
during psychiatric interviews involving deaf and HoH patients. To this end, the general
idea behind the proposed system was to infer the dialogue-act class of the doctor’s query,
using a hierarchical classification scheme, and then utilize this prior knowledge in order
to facilitate the automatic recognition of the patient’s response. The presented system is
capable of achieving promising accuracy levels after incorporating the ontological scheme.
It appears that this research line has some potential for alleviating the need for more
annotated data in low-resource languages such as the SLs.
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