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Abstract—This work deals with the problem of Sign Language
Translation and more specifically with translating Glosses to
text. We applied Sequence to Sequence models with attention
mechanism to a parallel gloss to English corpus. This is the
first work that used these models to translate American gloss
sentences to English. We present our experiments on several
network architectures with three different attention functions.
The results are very promising and can be useful for the further
implementation of a full sign language recognition system.

Index Terms—sign language translation, gloss to text, SLT,
sequence-to-sequence, encoder-decoder, attention mechanism,
GRU

I. INTRODUCTION

Communication among deaf-mute and hearing-impaired
people is typically achieved using Sign Language. However,
it is of major importance for them to find means of commu-
nication with people that can not sign or do not understand
Sign Language at all. Of course, texting is a way to overcome
this problem, especially nowadays with the common use of
smart phones. But typically deaf people have a lot of diffi-
culties in reading or writing texts, due to their poor language
experiences and due to their limited exposure to this type of
communication [11], [12].

So, there is a need of developing algorithms that can render
Sign Language into text or even better voice. Specifically,
translating Sign Language to text is a difficult and challenging
problem considering that signing includes hand gestures, facial
expressions and body pose. In order to model and analyze
glosses (sign language words) all of the above channels of
information should be utilized, achieving the mapping of the
video features to their proper translation.

Sequence-to-sequence models with attention mechanism
have been successfully applied to translation from a language
to another [2], [3], [9]. In the current work, we applied
sequence-to-sequence attention models to solve the problem
of gloss sentences to text. The glosses can be the output
of a visual sign-language translation system (e.g. [32]). Al-
ready having gloss sequences and their corresponding word
sequences, makes the translation feasible with the use of the
aforementioned models.
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The contribution of this work lies in presenting a method for
translating Sign Language glosses to text. To our knowledge
it is the first time that a parallel corpus dataset of this size
is evaluated (American Sign Language-Parallel Corpus 2012
[1]). Previous attempts, e.g. [24], used a much smaller corpus,
which may not be enough to demonstrate the potential of a
machine translation method. Here we implemented and evalu-
ated experimentally a sequence-to-sequence attention system,
using two different architectures with promising results.

In the next two sections, we briefly look into the past works
both on sign language recognition or translation and sequence
to sequence models emphasizing on how attention mechanism
improves the behaviour of these models. In section IV, the
specific architectures used are analyzed and the experimental
results are provided. Finally section V concludes the paper and
describes future steps.

II. RELATED WORK

Sign Language processing has many difficulties when trying
to extract text from visual signs. Firstly, the amount of frames
that correspond to a gloss is not fixed. Also, sign language
includes manual and non-manual cues and we need to capture
all the useful channels of information somebody uses to
sign and map these features to some text. The most serious
efforts on the problem took place during the last decade and
were more focused on recognising the gloss out of isolated
frames or to a continuous sign recognition, but all these
approaches did not have satisfying results. The first attempts
were influenced from automatic speech recognition methods
using Hidden Markov models [35], [36], [37] and the more
recent ones focused on Convolutional (CNN) and Recurrent
Neural Networks (RNN) language models [31], [32], [33],
[34]. Till the rise of sequence-to-sequence neural models, the
results were rather poor.

A. Sign Language Translation

Translating Sign Language to a spoken one, means to
capture video from signers, process the frames to extract mean-
ingful features and map these features to the corresponding
text sentence. However, there are not a lot studies (and also



not many datasets) that translate Sign Language directly from
video frames to text. In Neural Sign Language Translation
[24], Koller et al. continued their previous work applying
sequence to sequence models and were the first that created
and made freely available PHOENIX 2014T dataset with
annotation both on gloss and on German language [28]. They
made three groups of experiments, that is translation of gloss
sequences to text, mapping frames directly to text and translat-
ing gloss sequences to text after having estimated the glosses
out of the frames. The advantage of our work compared to
Neural Sign Language Translation is that PHOENIX 2014T
includes 8257 parallel (train, validation and test) data which
is much smaller than ASLG-PC12 that we used and is made
up of 87710 parallel sequences.

In [25], [29] the authors after creating their own dataset
(KETI sign language dataset), also followed the approach of
attention sequence models but based on the estimation of
human keypoints with the help of OpenPose [26] and they got
decent results. Lately, the authors of [27] introduced a hybrid
system which combines rule-based and statistical translation
approaches in order to translate Turkish sign language.

Our work differs from the aforementioned in the dataset
used and in the gloss level of translation. Our objective is
similar with the first group of experiments of [24], that is
translating glosses to text, but we aim in translating American
sign language to English and not in German Sign language to
German text.

III. SEQUENCE-TO-SEQUENCE MODELS

Translating text from a language to another using sequence-
to-sequence (or encoder-decoder) models was firstly proposed
by Kalchbrenner and Blunsom [2], Sutskever et al. [3] and Cho
et al. [4]. Let us explain how these models work and achieve
translation. These models, try to learn-encode information of
the whole input sequence and pass this encoded message to
the decoder to produce the expected word in each time step.
Having a sequence in the input and output, means that there is
a dependency of each time input with each previous. This time-
dependency and the variable-length input/output sequence,
raises the need for using recurrent neural networks.

A. RNN as Encoder-Decoder

Thus, there is a combination of two recurrent neural net-
works; one for the encoder and another one for the decoder
model. The encoder RNN reads a word, as a word embedding
vector step by step. Word embeddings are real-valued vector
dense representations that carry information about the meaning
of the word and encode semantic similarity among the words
of the vocabulary [19], [20]. By the end of reading the whole
source sequence, the hidden state of the encoder RNN includes
a context vector (c in Figure 1); that is a summary of the input.
While encoder operates as an ordinary recurrent network,
decoder differs by the fact that apart from the previous output
and the hidden state it has an additional input of the context

vector in order to predict the next output. Equations (1) and
(2) describe RNN-Encoder and RNN-Decoder hidden unit in
a sequence-to-sequence model.

hEncoder
t = RNN(xt,h

Encoder
t−1 ) (1)

hDecoder
t = RNN(yt−1, ch

Decoder
t−1 ) (2)

where in the above equations xt is the input at time t,
yt−1 is the previous output, ht−1

Encoder,ht−1
Decoder are the

encoder and decoder hidden outputs respectively and c is the
context vector (encoder output at last input time step). Given a
source word sequence in the input, the whole encoder-decoder
model aims at maximizing the probability of a correct target
word sequence.

Fig. 1. An encoder-decoder model, where C depicts the context vector of the
input encoded information [8].

There are however some problems encountered by the use
of RNN and by the structure of the encoder. There is the
known problem of the vanishing or exploding gradient during
training [5], [6]. This is partially dealt with the use of Gated
Recurrent Unit (GRU) RNN which is less computationally
expensive, but more importantly less vulnerable to the gradient
problem than the Long Short Term Memory (LSTM) [7]. Also,
it is a problem that the encoder needs to encode all the input
sequence information in a fixed length vector. When the model
is tested with an input of a longer sequence than those of the
training set, it will be difficult for it to produce acceptable
results.

B. Attention Mechanism

To address the aforementioned problems of the classic
encoder-decoder structure, attention mechanism was intro-
duced by Bahdanau et al. in [9] and by Luong et al. in
[10]. The goal of attention mechanism is to align encoder and
decoder hidden states. Previously, just the last hidden state of
the encoder was passed to the decoder as an encoded summary
of the input. In attention mechanism each time step a context



vector is computed as a linear combination of the alignment
vector and the encoder hidden states, that is:

ct =

T∑
s=1

at(s)hs (3)

each time step the alignment vector at(s), is computed by the
below equation:

at(s) =
exp(score(hTt ,hs))∑T
s=1 exp(score(h

T
t ,hs))

(4)

where hTt and hs are the current target (decoder) hidden state
compared with each source (encoder) hidden state.

Equations (5-7) show the three attention score functions as
proposed by Luong [10]:

Dot function : hTt hs (5)

General function : hTt Wαhs (6)

Concat function : υTα tanh(Wα[h
T
t ;hs]) (7)

It is worth mentioning, that the third score function is very
similar to the one suggested by Bahdanau [9]:

Bahdanau function : υTα tanh(Wαh
T
t +Uαhs) (8)

where in the above equations, υTα , Wα, Uα are weight
parameters. After having been computed, the context vector is
combined with the decoder hidden state into a concatenation
layer to produce attentional hidden state:

h̃t = tanh(Wc[ct;ht]) (9)

where Wc is a weight matrix. Finally, attentional hidden states
are fed into a softmax layer to produce output predictions.

p(yt|y<t, x) = softmax(Wch̃t) (10)

IV. EXPERIMENTAL RESULTS

A. Dataset and Preprocessing

For our experiments, we used the ASLG-PC12 dataset
[1]. It was created due to the need of a big parallel cor-
pus for American Sign Language. The authors presented a
novel algorithm for creating glosses from English words. It
contains about 87710 gloss sequences-word sequences pairs
from which we used the first eighty percent of them for the
needs of training and the rest twenty percent for extracting
the translation results. Both training and testing samples were
shuffled in a random manner and specially training samples
were also shuffled before every epoch.

Based on this dataset, there has been developed an approach
of a probabilistic model that builds a translation memory and

with this memory, statistical machine translation was achieved
[1]. Also in [23], the authors motivated by the lack of a parallel
corpora between English and ASL, presented an algorithm that
transforms English speech to ASL gloss.

A system (as a part of Speech2signs project) that translates
English text to gloss text was introduced by Manzano in
[30]. Our work is the first one using ASLG-PC12 dataset for
translating gloss sequences to English word sequences using
encoder-decoder models with attention mechanism.

It is worth noting some steps of preprocessing in the dataset
that helped improve the results. As a normalisation step on
each input sequence, we subtracted all the punctuation (com-
mas, dots, multi spaces, exclamation mark etc.). After having
the dataset loaded, we search for all the glosses/words of the
output/input vocabulary that count less than 5 appearances
in all sequences. All these words/glosses are replaced by
the symbol ’UNK’, meaning unknown word, reducing the
vocabulary size to its half (as suggested in [13], [14]). This
reduction of the input and output vocabulary size is a fact
that helped improve our results. Specifically, our input (gloss)
vocabulary is finally consisted by 5316 tokens and out output
vocabulary by 6900 tokens. After that, train and test data are
shuffled in a random order.

Fig. 2. Our Sign Language Translation system, for two or four encoder-
decoder layers.

B. Experiments Setup

In the current work, we implemented a sequence-to-
sequence system with attention mechanism for the purpose of
translating a gloss input sequence to its corresponding English
word output sequence, as shown in Figure 2. We implemented
the whole system using PyTorch framework [21]. For the
encoder and the decoder we used GRU hidden units, as they
perform better than the LSTM. Each time step, GRU encoder
gets in the input a gloss in a vector representation of a word
embedding (gloss embedding in figure 2; allow us to put it
this way). During training, the whole gloss input sequence is
mapped with the corresponding output word sequence (where
each word is also represented as a word embedding).



In the decoder part, we included all three Luong’s attention
mechanism functions. Above the decoder hidden layer, there
is placed a Softmax layer to choose the proper index of the
decoded word in the vocabulary and give the output. As an
optimization algorithm we used Adamax [17], a variant of
Adam algorithm that uses infinite order moment norm instead
of Adam’s second order. As the authors of Adam claim, infinite
moment norm makes the algorithm more stable to noise in the
gradient. As a cost function, cross-entropy measurement was
chosen.

We implemented different experiments comparing the trans-
lation results for the three different attention mechanism score
functions. We applied these experiments on two different
encoder-decoder architectures. The first architecture includes
four layers, each layer has 800 hidden nodes and was trained
for 10 epochs, while the second one includes two layers, each
layer having 350 hidden nodes and was trained for 5 epochs.
The number of epochs on both architectures was chosen as
the one demanded for the system to converge adequately.

Some settings we need to mention are the following. We
set the size of batches to 32 for all the experiments and for
the Adamax optimization algorithm we set the learning rate to
0.001. We also set a dropout rate of 0.25 both for the encoder
and the decoder at the training phase to prevent over-fitting.
To help the whole system learn better and quicker, we applied
teacher forcing ( [38], [39], [40]) to the decoder. Teacher
forcing means that every time the decoder gets as an input
its previous produced output, instead of this output we feed
it with the actual output, that is the true expected word. We
applied teacher forcing with a probability of 0.5 to happen per
decoder input.

As far the word embedding matrix concerns, we set its
dimensions equal to the length of input/output vocabulary
size as the number of rows and the GRU hidden size as
the number of columns. We did not make use of an existing
pretrained word embedding but we used PyTorch embedding
module. Pytorch embedding objects are actually parameters
that are trained in an end-to-end manner along with our whole
sequence-to-sequence system.

C. Evaluation Metrics

Since we have to do with natural language, the results would
be better evaluated by a human, considering the fact that there
may be many correct translations for a reference sentence. But
there is a very useful metric for evaluating results in natural
language processing, the BLEU score. BLEU score is a way
to compare a translation result to a reference translation [18],
[42]. BLEU metric score ranges from 0 to 1; a score of 1
means the sentence is identical to its reference. For simplicity
reasons however, it is often stated on a scale of 1 to 100.
BLEU uses n-grams to compute BLEU scores, looking for
the presence or the absence of a word (or a group of n words,
n-grams) in a sentence.

To find BLEU-4, we need to compute each n-gram BLEU
score individually by comparing each reference n-gram to each

TABLE I
TRANSLATION EXAMPLES

gloss seq. DESC-RE NEED TO BE SOME FORM SUPPORT
THAT PEOPLE CAN DESC-LIVE ON IF X-Y LOSE
X-Y JOB .

ground truth there needs to be some form of support that people can
live on if they lose their jobs

translation there needs to be some form of support that people can
live on if they lose their jobs

gloss seq. X-WE WILL DECIDE DESC-LATER X-IT BE DESC-
NOT DESC-NECESSARY TO DECIDE THAT DESC-
NOW .

ground truth we will decide later it is not necessary to decide that
now

translation we will decide later it is not necessary to decide that
now

gloss seq. X-WE DESC-STILL HAVE DESC-VERY DESC-
IMPORTANT MOMENT FOR REFLECTION BE-
FORE X-WE .

ground truth we still have a very important moment for reflection
before us

translation we still have a very important moment for reflection
before us

gloss seq. X-IT WOULD DESC-REFORE BE DESC-
INCONSISTENT WITH X-WE DESC-EARLIER
POSITION TO GIVE CONSENT WITHOUT DESC-
FURR ADO .

ground truth it would therefore be inconsistent with our earlier posi-
tions to give consent without further UNK

translation it would therefore be covered with our earlier position
to give the but without further UNK

gloss seq. DESC-SOCIAL MARKET ECONOMY BE DESC-
SUCCESSFUL MODEL BEHIND GERMANY X-
POSS DESC-ECONOMIC MIRACLE .

ground truth the social market economy was the successful model
behind UNK economic miracle

translation social market economy is successful a model of behind
UNK economic

gloss seq. X-I DESC-REFORE CONSIDER DESC-
MANDATORY QUALITY LABEL TO BE DESC-
IMPORTANT OPPORTUNITY FOR X-WE FARMER
.

ground truth i therefore consider mandatory quality labelling to be
an important opportunity for our farmers

translation i therefore consider the of quality to to be an important
opportunity for us

gloss seq. WOMAN MUST HAVE DESC-UNIVERSAL AND
DESC-EASY ACCESS TO INFORMATION ON
HEALTH ASPECT SEX , REPRODUCTION AND
DESC-MEDICAL SERVICE .

ground truth women must have universal and easy access to informa-
tion on health aspects of sex UNK and medical services

translation women must have a and and to to information on health
the aspects aspects UNK UNK

gloss seq. DESC-PARI CONVENTION REGULATE
FREQUENCY , QUALITY AND DESC-
ORGANISATIONAL PROCEDURE DESC-
INTERNATIONAL EXHIBITION .

ground truth the paris convention lays down rules on frequency qual-
ity and procedure for international exhibitions within its
remit

translation the UNK convention down down rules on the quality
quality and procedures for international UNK within its



hypothesis and then we will compute their weighted geometric
mean as:

BLEU = min(1,
lhyp
lref

)

4∏
n=1

(bleui)
1/4 (11)

where lhyp, lref are the hypothesis sentence length and
reference sentence length accordingly and this first term is
introduced to penalise sentences with length shorter than
that of the reference. An example of calculating BLEU-4
score for a reference and a hypothesis sentence would be
helpful to better understand this metric. Assume the next
two sentences as the reference and the hypothesis accordingly:

- reference: ”Today I woke up too early”
- hypothesis: ”Today I woke up very early”

In table II, BLEU scores for the hypothesis sentence are
shown:

TABLE II
SCORES FOR DEMONSTRATING BLEU COMPUTATION

BLEU-1 BLEU-2 BLEU-3 BLEU-4 BLEU
0.83 0.6 0.5 0.33 0.537

For computing the BLEU score, we used NLTK’s ( [16])
open source BLEU score functions. We computed BLEU-
1, BLEU-2, BLEU-3 and BLEU-4 cumulative scores. We
computed each BLEU score for each sentence according to
its reference and then we computed the mean value (macro-
average precision).

D. Results

In Table III and Table IV the results of our experiments
are presented for the two encoder-decoder architectures ac-
cordingly. Somebody may notice that the BLEU-1 score gives
very good results, however we should take into consideration
BLEU-4 as it is the default BLEU score of NLTK library
and is actually a lot more meaningful for evaluating machine
translation results.

A few typical examples of the translated results, their gloss
sequence and their ground truth sentence are given in Table I,
as a more intuitive and demonstrative way to evaluate them.

The first three examples can be considered as qualitative
translations as they have no wrong word translated. In contrast
the rest examples have three or more errors. There were a lot
fully correct translation results but we chose to point a little
more to the wrong results and comment them.

As somebody can notice by the Translation Examples table,
most of the sentences include the symbol ’UNK’. This happens
due to the fact that all the replaced words with the ’UNK’,
actually constitute an important part of the counted words of
the vocabulary. As a result when the system was about to
predict a rare word, in many cases it was making the wrong
choice giving ’UNK’. It was more easy for the algorithm to
translate correctly words that had more appearance counts in

the output vocabulary. If the vocabulary counts were more
equalised (thinking the word counts as a histogram), this
phenomenon would be less significant.

TABLE III
LAYERS: 2, EPOCHS: 5, HIDDEN SIZE: 350

Attention BLEU Score
Score Func. BLEU-1 BLEU-2 BLEU-3 BLEU-4

dot 0.789 0.691 0.596 0.498
general 0.811 0.718 0.635 0.544
concat 0.788 0.690 0.601 0.503

TABLE IV
LAYERS: 4, EPOCHS: 10, HIDDEN SIZE: 800

Attention BLEU Score
Score Func. BLEU-1 BLEU-2 BLEU-3 BLEU-4

dot 0.867 0.795 0.732 0.659
general 0.848 0.778 0.707 0.630
concat 0.863 0.790 0.725 0.651

Therefore, in order to provide better results we would need
a bigger dataset with less infrequent words. In that case there
would be no need to make use of the trick with the ’UNK’
replacement word. Also, a Beam search decoding method
probably would give a closer to the ground truth translation
result [43], [44].

Considering the results on Table III and Table IV, we
can be satisfied. BLEU-4 score gave the best results for the
concatenation attention function with a value of 0.65 for the
second architecture. Close to concatenation result is the dot
one. But, the general attention function performs about the
same, resulting about 0.65 score both 4-layer encoder-decoder
architecture, while dot function had the poorest performance.
If the first network architecture was trained for more epochs
and could succeed better results, it would be preferable to
choose it, combined with the general attention score for
computational cost reasons.

V. CONCLUSION AND FUTURE WORK

The whole encoder-decoder system with its amount of
layers and corresponding parameters did have a good perfor-
mance, but is time and space expensive. The so promising
Transformer attention model [45], [25] is less computational
expensive and seems to give better results than the classic
encoder-decoder attention models [15]. As shown above, the
results are promising. A different dataset for evaluation and
test purposes and a Transformer model, would construct an
improved and more trustworthy combination as the major part
of a Sign Language translation system.
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