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Abstract

In this work a bottom-up approach for human behaviour understanding is presented,
using a multi-camera system. The proposed methodology classifies behaviour as
normal or abnormal, by treating short-term behaviour classification and trajectory
classification as two different classification problems. Based on that assumption, a
set of calculated features provide input to two one-class classifiers: a Support Vector
Machine and a continuous Hidden Markov Model treated as an one-class classifier.
An approximation algorithm, referring to the Forward Backward procedure of the
continuous Hidden Markov Model, is also proposed to overcome numerical stability
problems in the calculation of probability of emission for very long observations.
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1 Introduction

Motion analysis in video and particularly human behaviour understanding has
attracted many researchers [22], mainly because of its fundamental applica-
tions, which include video indexing, virtual reality, human-computer interac-
tion and smart surveillance. Smart surveillance in itself is one of the most
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challenging problems in computer vision. Its goal is to automatically model
and identify human behaviours, calling for human attention only when a sus-
picious behaviour is detected. With the increasing number of cameras in many
public areas, the related research becomes more appealing and is offered more
application possibilities.

This work deals with the classification of behaviours as normal or abnormal.
Based on the remark that abnormal behaviour is considered to be rather
infrequent (and thus abnormal), we choose to model normal behaviour and
define as abnormal any behaviour deviating from that normality model. Our
methodology applies two classification criteria:

(1) short term behaviour
(2) trajectory

The short term behaviour refers to the type of behaviour that can be localized
in a spatio-temporal sense, i.e. is brief and within restricted space. Examples
of such behaviours are walking, standing still, running, moving abruptly etc.

In the related literature the aforementioned classification criteria are mostly
treated separately and, furthermore, few works concentrate on learning only
normal behaviours. The methodology provided herein provides the discrimi-
nation of anomaly due to abnormal short-term motion, as happens in the case
of abrupt motion, as well as anomaly due to long term motion, as in the case
of abnormal trajectory.

Recently, several researchers have dealt with the problem of anomaly detec-
tion, which is the process of behaviour classification as normal or abnormal.
A variety of methods, ranging from fully supervised [9,10] to semi-supervised
[34] and unsupervised systems [19,20,15], have been proposed in existing liter-
ature, which we further review in section 2. It should be noted, however, that
most of the existing approaches do not use multi-camera information, except

for [36], where multiple video streams are combined via a coupled Hidden
Markov Model.

Our methodology contributes in current research in several ways:

e The presented approach reflects two different criteria of labelling an ob-
served behaviour as normal or abnormal, since the final abnormality de-
cision depends on the output of two different classifiers with independent
inputs: short-term behaviour information and trajectory information.

e The behaviours are classified according to the target object’s position on
the ground plane, based on homography (see section 4) which provids higher
accuracy compared to pure image-based techniques?! .

1" An early version of this work has been presented in [18].
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Fig. 1. The main framework for video surveillance systems.

e We introduce a continuous Hidden Markov Model (¢cHMM) as an one-class
classifier, using the notion of length-normalized log-probability (see section
6.1).

e A novel algorithm implementing a Forward Backward procedure for the
emission probability estimation in HMMs is proposed, handling numerical
instability resulting from long sequences (see section 6.2).

The rest of the paper is organized as follows. In section 2 recent literature
is reviewed, hinting as to the problems the proposed method tackles. Section
3 provides an overview of the proposed architecture. In section 4 we explain
briefly how homography is used to obtain information on the position of target
objects on the ground plane. In section 5 short term behaviours are defined
in terms of a set of extracted features. Subsection 5.2 describes in detail the
classification process which is based on short term behaviours. In section 6,
on the other hands, trajectories’ classification is presented by elaborating how
we have used a continuous Hidden Markov Model as an one-class classifier
(subsection 6.1). As an added value, subsection 6.2 contains the description
and foundation of a modified algorithm for the Forward Backward procedure
of probability estimation tackling long sequences in contemporary comput-
ers. Finally, in section 7 we provide the experimental results and section 8
concludes this paper through a brief discussion on the lessons learned.

2 Related Work

A typical surveillance system is divided into two layers, which include low level
and high level processes respectively, as depicted in Figure 1.

The low level contains such methods as motion detection, object classifica-



tion and tracking. In motion detection research is focused on either static
or adaptive background subtraction or temporal differencing algorithms, aim-
ing to isolate the foreground pixels that participate into any kind of motion
observed in a given scene. Object classification is the process of classifying
detected objects into such classes as humans or vehicles, appearing in a given
scene. Following motion detection and object classification, detected objects
are located in the course of time and their trajectories are extracted via track-
ing.

High level processes use motion information from the low level in order to
finally identify the type or nature of a moving object’s activity. Motion-based
techniques are mostly used for short-term activity classification (e.g., walking,
running, fighting), and do not take into account object trajectories. These
techniques actually calculate features of the motion itself and perform recog-
nition of behaviours based on these features’ values. Such methods have been
presented by Bobick et al. in [5] where Motion Energy Images (MEIs) and Mo-
tion History Images (MHIs) are used to classify aerobic type exercises. Taking
this work another step further, Weinland et al. in [32] focus on the extraction
of motion descriptors analogous to MHIs, called motion history volumes, from
multiple cameras. Then, these history volumes are classified into primitive ac-
tions. Efros et al. in [11], compute the optical flow [12] of a given object to
recognize short-term behaviours through a nearest-neighbor classification.

Several methods that take into account the object’s trajectory for behaviour
classification use the centroid of the target object [2,16,25,13] or points of
interest in a given image [4]. These methods, however, fail to take into ac-
count the short-term actions, for example the case where a man threateningly
moves his hands. Most of the existing methods also face problems like view
dependency, and occlusion when they extract trajectories from one camera.

HMMs and their variations have been widely applied on trajectory classifica-
tion, e.g. [7,14,1,30], due to their unsupervised training, their simplicity and
computational efficiency and mainly because motion can be viewed as a short-
term stationary signal. Abstract Hidden Markov Models are used by Nguyen
et al. in [24] to deal with noise and duration variation, while Wang et al. in
[31] use Conditional Random Fields for behaviour recognition in order to be
able to model context dependence in behaviours. In our approach we use a
Continuous HMM to model trajectory, using a methodology that allows the
model to be used as an one-class classifier.

Our presented approach focuses on the anomaly detection aspect of behaviour
understanding, which differentiates it from the aforementioned methods. How-
ever, recent research has provided several anomaly-detection-focused approaches
that we briefly review here. These approaches can be classified based on
whether the are supervised, semi-supervised or unsupervised.



In [9,10] the authors use supervised approaches that need the classes of both
normal and abnormal behaviour to have an adequately large number of labeled
instances, provided as a priori information. In our method, on the other hand,
the training set only consists of normal instances of data. The semi-supervised
method of [34], which only uses normal data has a different approach in that
it creates a set of marginally normal instances as abnormal to constitute an
estimation of the abnormal class. In our work, we have used the derived fea-
ture of length-normalized log-probability to define the normal class, without
attempting to generate abnormal instances at all. On the other hand, we also
take into account motion-based features used in an one-class SVM to detect
further abnormalities.

A set of unsupervised methods in existing literature use large databases [35,6]
containing all the observed normal behaviour patterns, matching any new in-
stances against the database represented instances. In our work, we have a
single composite model (including HMM and SVM classification) for all nor-
mal instances, thus avoiding the need for database storage and look-up. Jiang
et al. in [15] start by representing normal trajectories by a single HMM model
per trajectory, clustering and retraining these HMMs until a given condition
holds. Other than the fact that, in the work presented herein, we also cover
the case of short-term behaviours besides trajectory, we model the full set
of normal trajectories into a single HMM from the beginning. Therefore, less
calculations are required. Lee et al. in [19] use n-cut clustering over motion
energy images to determine outliers, which are then judged as abnormal. This
approach is different from ours in that it requires repetition of the n-cut clus-
tering when a new instance is to be judged. Another approach is found in
[20], where a multi-layer finite state machine representation is used to model
activities. According to [20], an abnormal activity is judged by the number
of times a valid transition fails to be performed when matching the activ-
ity to the model state machine. Our approach uses probabilistic tools as the
HMM instead of finite state machines to model uncertainty within the nor-
mal activities’ modeling. In [33], a single feature vector represents position,
motion and shape information, which is used in a clustering process to detect
abnormality. In our approach we extract separate information for each clas-
sifier, attempting to model more precisely two aspects of motion. This kind
of modularity allows switching between using one or both classifiers for the
detection of either abnormal short-term behaviours, abnormal trajectory, or
both. Furthermore, one can use information from each classifier to determine
the type of abnormality detected.

In behaviour understanding, only few works employ homography estimation.
Park et al. in [26] have used homography to extract object features and, using
spatio-temporal relationships between people and vehicles, extract semantic
information from interactions calculated from relative positions. Ribeiro et al.
in [28] have estimated homography and enabled an orthographic view of the



ground plane which eliminates perspective distortion origination from a single
camera. Then, they have calculated features in order to classify the data in
four activities (Active, Inactive, Walking, Running).

In existing literature two basic assumptions are usually made in order to ex-
tract features. The first is that the targets move almost vertically to the cam-
era z-axis or within a range that is small compared to the distance from the
camera. This assumption ensures that the size variation of moving objects is
relatively small. The second assumption is that humans are planar objects,
so that homography-based image rectification can be possible. However, even
though this later assumption may be true when the cameras are close to being
vertical to the ground plane, as in the case of cameras viewing from high ceil-
ings, it does not stand in general. In our method we get over these limitations,
as can be deduced from the section on homography estimation (section 4).

3 Proposed Methodology
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Fig. 2. System Overview

The proposed methodology is based on the fusion of data that we collect from
several cameras with overlapping fields of view. We perform classification using



two different one-class classifiers, a Support Vector Machine and a continuous
Hidden Markov Model, with each classifier having different feature vectors as
input. The final decision on the behaviour is made by taking into account
outputs from both classifiers.

The system architecture is presented in Figure 2. The low level addresses
the problem of motion detection and blob analysis, providing the upper level
with two different features vectors per instance. We note that an object’s blob
is defined to be the set of the foreground pixels that belong to that object.
Background subtraction is applied for motion detection and a bounding box is
extracted. The blobs apparent within the viewing area of each camera are used
to extract the objects’ principal axes. These principal axes in combination with
the corresponding homography calculations are used to locate each object, i.e.
determine the points where the target object touches the ground plane. From
the coordinates of the latter points we calculate the trajectories of the objects.

Additional object information, namely the object’s centroid, blob size and
shape are made available during the preprocessing step. Furthermore, a his-
togram is extracted from the moving object’s shape depicting the moving
object’s blob projection on the y axis. The overall set of elementary features
is used for the creation of the final two feature vectors per instance: one vector
for each classifier.

The two classifiers used at this point are able to decide about the normality
of the observed behaviour under two different views:

e The first classifier (one-class Support Vector Machine — SVM) decides if
the short term behaviour is normal or not, supplied with feature vectors
computed by taking into account both the background subtraction and the
ground plane information. The features provided as input describe the short-
term motion information, which we argue that constitute the short-term
behaviour information.

e The second classifier is a continuous Hidden Markov Model (cHMM), also
used as one-class classifier, which supplied with the trajectory of every
instance-object. This classifier can decide whether a given trajectory fol-
lows the model of normal trajectories.

Our method has been implemented to work in two modes: offline and real-time.
In the offline mode, the decision concerns the classification of a time window
of arbitrary length, which can be used for example for the characterization
of video shots for video retrieval purposes. In its real-time aspect, the system
makes a decision in every frame whether to issue alerts as the events happen.
This decision is made by taking into consideration a time window of relatively
small duration concerning recent camera information (images). This aspect
can be used for security purposes, aiding a human supervisor.



In the recognition step, if either classifiers gives "abnormal” characterization
as an output, the system characterizes the scene as abnormal. This means
that we take as output the logical "or” of outputs, given that a value of true
indicates abnormality.

4 Preprocessing

The proposed methodology uses a preprocessing step that includes background
subtraction for moving target segmentation and then target localization us-
ing homography information. For the background subtraction, we adopted the
adaptive Gaussian mixture backround model for dynamic background model-
ing [37]. Similar or better methods could have been used for the same puprose,
without changing our overall approach, and the reader is referred to the related
literature for further information.

For target localization we have employed a homography-based approach. The
planar homographies are geometric entities whose role is to provide associa-
tions between points on different planes, which are the ground and the camera
planes in our case. In our indoor environment the target moves on the ground
plane, so mapping between planes is possible. In the following we explain
briefly how the approach works.

The scene viewed by a camera comprises a predominant plane, the ground. We
assume that a homogeneous coordinate system is attached to the ground plane,
so that a point on the plane is expressed as: Pr=(Zx1, Tr2, Tr3) . If this point
is visible to the camera, which is a matter of proper camera configuration,
the homogeneous coordinates of this point on the camera plane are given by
P.=(xu, Teo, xcg)T. The homography H is a 3x3 matrix, which relates P, and
P, as follows:

Tl hi1 hig his Tet
P,=H -P.< |z, = |hy hy he | | e (1)
Tr3 hsi hsy hss Le3

Let the inhomogeneous coordinates of a pair of matching points x, = (z., y.)
and X, = (Z,,y,) on the camera plane (pixel coordinates) and the ground
plane correspondingly. Then:

. _Zm _ hiy - xe + hig - ye + has
" Tp3 hg e+ hag o ye + has

(2)
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Fig. 3. View from three cameras and extraction of the principal axis projection on
the ground plane from two of the cameras. In ¢ the projection is not visible, however,
the corresponding accumulator is still created in d. In d three accumulators are
visible - two of them very close to each other.
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Each point correspondence gives an equation and four points are sufficient
for the calculation of H up to a multiplicative factor, if no triplet of the used
points contains collinear points. The calculation of H is a procedure done once
offline and in practice many points are used to compensate for errors.

The position of each target is done similarly to [38]. A background subtraction
algorithm extracts the silhouettes of the targets, which move on the ground
plane. From each silhouette we extract the vertical principal axis and we
project it on the ground plane by replacing (z.,v., 1)T and (2, ¥y, 1)T in
(1). The projection from each camera casts a ”line” on the ground plane as
depicted in figure 3. The maxima of those projected lines indicate the posi-
tions of the monitored targets, i.e., where the vertical principal axis touches
the ground. The method is not strongly affected when the target pose is not
vertical, because a vertical principal axis is still extracted from silhouettes. In
such cases the indicated position is not the exact position of the feet touch-
ing the ground but the one indicated by the vertical axes, which may be a
bit displaced. However also in such cases the method still gives good position
estimations.



5 Short-Term behaviours

Our first source of information for evaluating behaviour is the so called short-
term behaviour. Our methodology represents short-term behaviour with a
feature vector that consists of motion based features. In the recognition step an
one-class Support Vector Machine is used, trained only with normal instances.

5.1 Feature Calculation

In motion representation and analysis, our methodology uses information ob-
tained by preprocessing, namely the object’s bounding box, the object’s blob
and sequential positions. In figure 4, all preprocessing-extracted information
are illustrated.

Elaborating, from the background subtraction process we extract the position
of the object’s centroid inside the bounding box, the bounding box’s width
and height and the object’s blob. Figures 4a, 4b and 4c¢ show the captured
frames from each camera with the corresponding bounding boxes. Figures 4d,
4e and 4f show the background subtraction masks, from where the blob is
extracted.

The blob histogram is calculated based on the blob information. The histogram
of the blob indicates the number of pixels that belong to the blob for every y
coordinate. Figures 4g, 4h and 4i show the histograms of the given blob.

From homography estimation we calculate the object ground position and thus
the trajectory which is expressed as a sequence of (x, y) vectors on the ground
plane. Figure 4j illustrates the object’s trajectory in the scene, calculated from
all views.

The short term activity is represented by a 7-dimensional feature vector, as
follows:

f=((t),vr(t), Be(t), F (1), AF(t), max (AH(t)), max (ASD(t)))  (4)

The features’ calculation is presented in detail in table 1, with the features
being separated into 4 categories according to what type of information they
depend on. The first two features, speed and algebraic mean speed, are compu-
tationally inexpensive and time efficient calculated only from trajectory data.
Algebraic mean blob difference is also time efficient calculated only from the
background subtraction data on the object’s bounding box. Mean optical flow
and mean optical flow percentage difference are derived from simple opera-
tions on optical flow. For these two features we use data from both the object’s
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a. Bounding Box from Camera 1 b. Bounding Box from Camera 2 ¢. Bounding Box from Camera 3

d. Background Subtraction Mask €. Background Subtraction Mask f. Background Subtraction Mask
from Camera 1 from Camera 2 from Camera 2

g Histogram from Camera 1 h. Histogram from Camera 2 i_ Histogram from Camera 2

J- Trajectory (from the ground plane points)

Fig. 4. a, b and c: Frames captured from each camera with bounding boxes. d,
e and f: Background subtraction masks and blob indication per camera. g, h and
i: Histogram of the object’s blob for each camera. j: Trajectory formed by the
calculated ground points.

bounding box as well as the full images of the video sequences. Optical flow
is computationally expensive, but is robust and discriminative [12]. The last
two features are computationally inexpensive, and they are extracted from the
blob histogram. We have said that the histogram reflects the number of the
pixels that consist the foreground object per y coordinate. But, if we weigh
out the histogram with the total number of the histogram’s pixels, we have a
probability distribution function (pdf), p.(y;), that represents the probability
of an object’s pixel to lie in a given coordinate in the bounding box, ;.

Taking into account that features are extracted for every single video frame
and constitute the frame’s feature vector, we elaborate on the calculations
presented in 1

(1) v(t), is the Euclidean norm (over x and y axes of the ground plane) of

11



Table 1

Features calculated and used for classification.

5. mean optical flow

difference

Features Type

1. speed o(t) = /@O — 2 - D + 0 — 9l — DP

2. algebraic mean speed or(t) = \/(% Zzzt,Tﬂ vz(1))% + (% ZZ iy Vy(7))?
3. algebraic mean bounding R(t) = %Z:;}Z( )

box difference where R (t)r = % Zé:t—T’-{—l wc(j).lzszgj):ﬁfl(i(_jl—).lh)cw_l)
4. mean optical flow F(t) = %

where [ ; is the normalized optical flow from camera ¢

AF(t) = SO

6. max entropy difference

7. max standard deviation

difference

%, with 1 < ¢ < numCam

— 3 pe(y;) - log pe(y;)

with p.(y;) the histogram value in y; location for camera c

max (AH (t)) = max;
where H.(t) =

and N the bounding box’s height

 (8SD10) = s G0,

with 1 < i <numCam

= max;

the instantaneous object’s speed, calculated from the current frame and
the previous frame object’s position.

Algebraic mean speed, vr(t), is the algebraic mean value of an object’s

speed within a time window that consists of the T last frames, including
the frame on ty. This value is calculated based on the algebraic sum of the
x and y coordinates of the speed’s vector, which is more robust against

noise than v(t).

On the same grounds, the calculation of mean blob difference, R(t), is

based on the algebraic sum of the bounding boxes’ area change within a
shifting frame window T’ comprising the last e.g. 5 to 10 frames. (w.(j),
he(j) represent the width and the height of the blob for camera ¢ for t=j.

Optical flow, F; is first calculated on every frame and for each camera i,

but only for the object’s edges inside the bounding box. Then, the optical
flow value is normalized by the number of the pixels that participate in
the calculation — which are the pixels of the edges — and the bounding
box area. Then we compute the mean optical flow value from all cameras.

()

Mean optical flow difference is the difference between the current and the

previous value of the mean optical flow divided by the previous value. This
offers the percentage of optical flow change. We calculate the features for
each camera and we keep the maximum value over all cameras.

(6) Max entropy histogram difference, max (AH (t)) is based on the Shannon

12




entropy, H(t), that is a measure of the uncertainty associated with a ran-
dom variable. This means that the more a given pdf resembles a uniform
pdf, the greater the entropy value. The main idea is that when an abrupt
motion occurs, the differences in entropy’s values will be significantly
greater than those of a normal slow motion.

(7) Max standard deviation difference, max (ASD(t)), is also calculated from
the object blob’s histogram. Standard deviation of the histogram (std)
is a measure of the spread of its values. The change on a histogram’s
standard deviation value from one point of view, ASD(t), can give us
important information for the motion of the object in that it indicates
within-bounding-box movement. We calculate the features for each cam-
era and we keep the maximum value over all cameras as the final feature
value.

5.2 Short-Term behaviours Classification

The decision whether a short-term behaviour is normal or not can be taken by
employing a one-class SVM as proposed by Scholkopf [29]. The selected model
does not require a labelled training set to determine the decision surface. The
one-class SVM is similar to the standard SVM in that it uses kernel functions
to perform implicit mappings and dot products and that the solution is only
dependent on the support vectors. Such an approach can be justified by the
fact that normal behaviours are easier to observe and thus whatever deviates
from them can be defined as abnormal. Thus we do not need to model explicitly
abnormal behaviours and we do not need labeling of data, as long as our
assumption on the sparsity of abnormality stands. This is what makes this
approach unsupervised.

The one-class SVM builds a boundary that separates the training data class
from the rest of the feature space. For more details the reader is referred to
[21].

6 Trajectories classification

Our second information source for evaluating behaviour is the trajectory. In
a museum scenario, the trajectory of a person entering from the designated
entrance, then approaching the cashier to buy a ticket, then browsing into
the room and looking around, and finally exiting from the designated exit
should be characterised as normal. Trajectories of persons entering from the
exit without first visiting the ticket stand, or going the wrong direction should
be labeled as abnormal.

13



Some works in literature use rules to define the restricted areas and therefore
distinct normal from abnormal trajectories. We apply an one-class learning
strategy, as in the short-term behaviours, by training our time series classifier
using only the normal trajectories. Each sample is a position vector (z,vy),
of the target in the global coordinate system in each frame (calculated as
described in section 4). The extracted normal trajectories (sequences of (x,y)
vectors) are used for training a continuous Hidden Markov Model (cHMM)
[27] and constitute the model observations.

For convenience, we use the compact notation A = (A, B, 7) to indicate the
complete parameter set of the model, where:

e A is the state transition probability distribution matrix.
e B is the observation probability density function per state matrix.
e 7 is the initial state probability distribution.

The original Baum Welch algorithm is used for the training step, while for
the recognition step we propose a modified Forward Backward procedure (see
section 6.2). The methodology presented here proposes solution to two prob-
lems:

e the use of the Hidden Markov Model as an one-class classifier.
e the efficient likelihood calculation in the forward-backward for long se-
quences, taking into account current machine limitations.

6.1 One-class continuous Hidden Markov Model

The problem of discriminating between normal/abnormal trajectories con-
cerns the definition of a measure that would give sufficiently different values
for the two classes. The variable length of the trajectories poses additional
difficulties. Long, normal trajectories would have cHMM generation probabil-
ity values comparable to small values of short, abnormal trajectories, so the
observation’s length factor needs to be removed.

If we can prove that for a normal observation sequence (O,orma) and for an
abnormal one (Ogpnormar) the following condition must hold:

log P<Oabn0rmal‘)\) log P<On0rmal‘)\>

5
length(Oabnmmal) length<0normal) ( )

then we will be able to use it as a classification measure. In (5) the logarithms
help us sharpen the differences between values below 1, and the division with
the sequence’s length normalizes the computed measure.

14



The anomaly detection problem begins with the definition of “what can be
labeled as normal”. We may define as normal the trajectories that between two
time instances t and t—+1, the probabilities of the corresponding observations
are proportional to each other, and their fraction can be viewed as a random
variable A. Taking into consideration that Oy is the observation sequence from
time = 0, until time = ¢, the random variable A depends only on the model,

AA, B, ) [27].

Thus, given the model and two consecutive observations O;, O, there is a
variable A, with an expected value § = E[A] such that:

P(O41) =6 - P(O) = % ~ 0 (6)

with 0 < ¢+ 1 < T. This assumption is derived by the facts that:

e A depends only on the model.

e normal trajectories have a high probability of being generated by the model.

e the expected value represents the average amount one ”expects” as the
outcome of the random trial when identical odds are repeated many times.

We can also see that, 0 < § < 1 because P(O;41) < P(Oy).
According to (6), we can expand the calculations as follows:
P(OtJrl) ~- P(Ot) = P(OtJrl) ~ 5t . P(Ol) =

logP(Oy1) o L

log P ~t-1 log P ~
0g P(Oy41) 080 +1log P(O1) = ——— T 1

- (t-logd +log P(Oy))

which results after replacing ¢ with ¢ — 1 in the following;:

logP(Oy)

: :%-((t—1)-log5+logP(O1)),Vt30<t§T (7)

As abnormal, we define the trajectories for which the probability of their
corresponding A value will be very low. For those trajectories, we assume
that there exists a transition from time k to time k£ 4+ 1 where, due to either
the transition probability a;; or the observation probability b;(O), the A value
probability (i.e. the probability to have such a A value for the given model)
decreases significantly, because the value of Ay, for the given time point k41
becomes lower than expected:

P(Og11)
dk: ————— = A1, p(A) << 1, Apy1 << 0 8
P(Oy) k1, P(A) k+1 (8)
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Before that k, the trajectory can be characterized as normal i.e.:

w:xh%:a ()

From the above we have:
P(Ogt1) = log Mgy +log(6*! - P(Oy)) =

log P(Ors) 1
k+1 k+1

- (log Agy1 + (K —1) -logd + log P(Oy)) (10)

For the discrimination problem (see eq.5), the following must hold:

log P(Op+1) < logP(O)
k+1 k

(11)

By letting t = k in (7) and using (10) in (11) we have:

1 1
1 (log Apy1+ (K —1) -logd + log P(0O,)) <« e ((k—=1)-logd + log P(04))(12)

Because k represents time, k > 0. On the other hand Ay, and d represent
the value of the probabilities’ ratio, so 0 < Ayy1,0 < 1. According to that
remark we can assume that for sufficiently large sequences, e.g. for £ < 10,
&~ 77 in (12) due to the fact that logd,logd < 1. Thus, eq.12 can be:

log Agi1+ (k—1)-logd +log P(Oy) < (k—1)-logé +log P(O;) =

log A < 0 (13)

Since Ay < 6, Agyq is a sufficiently small value that gives log Ap; < 0.
Given that (13) is valid, the initial assumption, eq.5, is true. Therefore, (5)
can be used as criterion for abnormal trajectory detection.

6.2 Log Likelihood Approximation in Long Sequences

As mentioned previously, the continuous Hidden Markov Models have prob-
lems with long sequences. This is due to the multiplications in the Forward
Backward algorithm, which is used to calculate the observation probability
given the model. The constant decrease of the observation probability results
to a very low value, which end up underflowing current computers’ number
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storage. Solutions like sampling the trajectory, only partially solve the prob-
lem.

In order to tackle the problem, one may rescale the conditional probabilities
using carefully designed scaling as proposed in [27]. We, however, have devised
a method for the approximation of the log-probability of a long sequence,
that gives the advantage of computational simplicity and in parallel keeps
the properties required for normal and abnormal trajectories’ classification
(eq.5). Our approximating methodology avoids the calculation of the scaling
factor and uses integer instead of real values. We have named this method
Observation Log-Probability Approximation: OLPA.

Given the trained continuous Hidden Markov Model and within the recogni-
tion step, in order to compute the probability of a known observation sequence
the Forward-Backward algorithm is used [27]. This algorithm consists of the
following steps:

(1) Initialization:

Oél<i> = T bl<01)
(2) Induction:

ar1(7) = [, ul)ay]b;(Os1)
(3) Termination:

P(O|X) = 2L, or(i)

To compensate for the constant decrease in the likelihood in long sequences
we modified the above algorithm so that instead of multiplications we use
additions of logarithms. Some background assumptions are given next.

By definition if |x] is the floor of x number, |loga — |loga|| < 1. Thus,
ll‘;i;(ho(g‘)) with %m. Now, due to the fact that for
long sequences o = P(O|\) is below 1 and that log &« — —Infinity, one may
assume that loga ~ |log«|. This approximation is acceptable, because the
estimation error is bounded (less than 1). Long normal sequences give small
values of cHMM probabilities, due to successive multiplications, making the
logarithm of those probabilities to be too high to let the 1 to be damaging.
Assuming this approximation is acceptable, it can be inserted to Forward

Backward algorithm.

we can approximate

First, we define functions necessary for computations in cHMM algorithms,
using logarithms:

llog(a-b)| = [loga + logh| ~ |[loga] + [logb]|| = [loga] + [logb]

Additionally the following applies for a sequence of x;, the bigger of which is
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xmaaﬁ-

Tmax S sz S n - Tmax = log(xmam) S log(z xz) S lOg(”) + log(xmam>

The order of magnitude for z; is 1079 or less and for n is 10, so log(3 x;) ~
max;(log(z;)) or [log(> x;)| ~ |max;(log(x;))].

According to all the above we can conclude to a modification of Forward Back-
ward algorithm, using the same dynamic programming idea:

Let Loga = |loga|, and & be the approximated «, then the following approx-
imations apply:

el

(1) = Log(mi - b( 1)) = [log m; + log ;(O1) ]
&y (1) = Log((X711 au-1(7) - aij) - b;(Or))

= UOg((ijlat—l(J) aij) - b;(Or))]
UOg(Z “o1(g) - azy)+logbj(0t)J

~ [log(XM, ay—1(j) - aij)] + |logb;(Oy) ]
~ max;([log oz —1(j) - ai;]) + [log b;(O;)]
~ max; (|log a;— 1(J)+10gauj) [log b;(O) |
o~ (1)) + Lai;]) + [log b;(Oy) ]

max;(|log a4
max;(&-1(j) + [logai;]) + [log b;(Oy) ]
(O|N) = Log(Z%, ar(i))

[log =%, ar(4)]

max; (~U((3% ar(i)])

°
I el

12

According to the above approximations, we can express the algorithm as fol-
lows.

(1) Initialization:
(2) Induction:

Gy (i) = maw; (@1 (7) + [log a;]) + [log b;(O1)])
(3) Termination:

P(O|\) ~ max; d, (1)

This Observation Log Probability Approximation (OLPA) helps us overcome
the problem of consecutive multiplications, by making it possible to use sum
of integers. Our achieved goal was to be able to calculate an approximation
of the probability of a long sequence that would otherwise be impossible to
compute, due to machine limitations.
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Fig. 5. a.View of our experimental room (exposition room), b.Normal and abnormal
trajectory example. In the latter the target goes over the barrier.

7 Experiments

As a scene for our experiments we have used our lab, where we installed
three cameras, as illustrated in figure ba, and there we tried to simulate some
common scenarios?. We have simulated a protected exposition room, where
only one visitor is allowed and he or she has to follow a certain path for en-
tering and exiting. Also, only certain short-term behaviours are allowed. As
short-term behaviour we label the action taken by a single person within a
time period of 25 frames that correspond approximately to one second in real
world. An artificial barrier inserted in the scene does not allow entering the
experiment area from a certain side and there also exists an “emergency exit”.
When someone visits areas which are not allowed, we consider to have a case
of abnormal activity (see 5b). Similarly, when areas are visited in the wrong
order (e.g. entering from the exit or exiting from the entrance) according to
the modeled continuous Hidden Markov Model, this activity is also labeled as
abnormal. Furthermore, we consider normal short-term activity to be some-
thing like “walking”, “standing still” or “active” and in no case “running” or
“abrupt motion”. The experiments measure the performance of two variations
of our process, namely the offline and the real-time process.

Our cameras are the AXIS 214PT7Z (network cameras), from which the frames
are received through HTTP requests. The communication with the cameras
is performed through an IP network. For frame synchronization we used an
Network Time Protocol (NTP) server which gives time stamps to each frame,
so the closest frame triplet is considered to match a single time frame.

2 The custom corpus used within our experiments can be made available to any
interested party, via e-mail correspondence.
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In our system, we use the LibSVM [8] library to train an one class SVM
model with a radial basis function (RBF) kernel. The training set consists of
feature vectors of normal behaviours only. The radial basis function has been
chosen based on experimental results, where we had used all the alternatives
(polynomial, linear, sigmoid). SVM parameters were also optimized through
trial and error.

a. bounding box :
bounding box background edges

Fig. 6. a. Foreground object inside its bounding box, b. Edges extracted with Canny
inside the bounding box, c. Edges extracted with Canny inside the box without the
edges of the background.

In order to calculate the features associated with the optical flow, many restric-
tions were taken into consideration and various normalizations were applied,
to avoid noise and reduce the computational cost. Problems were mainly due
to our baseline background subtraction, as well as to the noise in the cameras’
unfiltered image data.

To the end of reducing the computational cost, we have limited the optical
flow’s calculation only in the foreground regions. We have also used edge de-
tection to avoid noise in the extraction of the optical flow. It is well known
that the optical flow vectors may have high values in background regions that
become unoccluded by a moving target, even though these regions do not
move at all. This would significantly affect our classification scheme and had
to be avoided. To overcome this problem, we have applied the Canny method
for edge detection (]23]) within the blobs’ boundaries (see figure 6). Then, we
have calculated the optical flow only for the pixels belonging to these edges.

Due to the complex background, edges from the background added noise to
our calculations, thus we have made use of some of the first frames from each
video in order to extract background edges and subtract them from the final
optical flow calculation. This choice is justified by the fact that we expect to
have the highest amount of optical flow around the edges, while the optical
flow is expected to be low within homogeneous regions, thus the most useful
information for our classification is not lost. In figure 6, you can see all the
processing steps described here. It should be noted that the learning process
based on the first few frames can be considered as part of the initial system
calibration (also see section 4).
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As already indicated, the background in our input data was natural (non-
uniform) and we had to deal with noise. In our experiments we used classic
surveillance cameras with low resolution (352x288), while the images captured
were compressed with JPEG compression method, resulting to loss of image
quality and to the creation of artifacts that sometimes affected the background
subtraction. Therefore, we used the a priori knowledge of a human target’s
size in order to avoid bounding boxes of inexact sizes. The trivial rule used was
that the bounding box can have a maximum width and height and all other
bounding boxes were to be omitted. The threshold for considering the size of
a bounding box as acceptable was experimentally determined. Obviously, this
heuristic is dependent on the input video and has serious defects, for example
in the case where a target human lies on the floor or extends his hands. A
more robust approach for background detection and removal should be used
to eliminate the limitations posed.

In order to determine which of our features were the most promising for the
desired classification setting we used a subset of our data, where both normal
and abnormal instances had been labelled. Using an information gain criterion
and a 10-fold cross validation methodology, we have found that the most
promising feature is the max entropy difference (see table 1 in section 5.1). The
overall ranking of the other features based on the information gain criterion is:
algebraic mean speed, max standard deviation difference, speed, mean optical
flow, algebraic mean blob rate and mean optical flow rate. Of course the labeled
data were only used in this process, which we hoped would offer more intuition
on what features offer higher discriminative potential.

7.1 Testing the one-class cHMM assumption

To see whether the (Ogl) ratio for normal trajectories can be described based
on a predefined probability density function, that can in turn be represented by
its expected value, we trained a cHMM model with normal trajectories only 3

Then, we generated several sequences O using this cHMM. These sequences
should obviously be considered normal. We then calculated the ratio %
for all values of t, i.e. all subsequences of individual O sequences. In figure 7
we show the results of the logarithm of probabilities log P((”)l) to offer more
detail, since the magnitude of the probability values is very low. What figure
7 shows is that a normal distribution appears to offer a good approximation
of the actual distribution of ratio values, even though the ratio values appear

to be bounded.

3 We have used the JaHMM library [39].
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Fig. 7. Fraction of logarithms of cHMM probabilities in normal trajectories

7.2 OLPA performance

For long observation sequences we expect, based on the analysis in section 6.2,
that our probability calculation algorithm (OLPA) will give us results strongly
correlated to the results the Forward Backward procedure returns. Experi-
ments show that, indeed, the Forward Backward algorithm and the OLPA
algorithm have strongly correlated results in short observation sequences as
well. We have performed a t-test to show that the mean values of the distribu-
tions of the normalized-logP (returned by the Forward Backward algorithm)
and normalized-LogP (returned by OLPA) are the same within statistical er-
ror (p-value | 0.05). Additionally, we have calculated Pearson and Kendall
correlation (to allow for non-gaussian data) between the two probability esti-
mations and, as is illustrated in figure 8, the samples of the two distributions
are very strongly correlated (> 0.98), with a p-value much lower than the
usual threshold of 0.05.

Our next experiments were performed in two steps, offline training and testing,
and real-time testing.

7.8 Offtine Experiments

We have performed a 10-fold cross validation method to test the effectiveness
of our system using the offline approach. 15 videos with normal and 5 videos
with abnormal behaviours were captured. Each of the videos lasts between
3000 and 6000 frames and contains one to five different long-term behaviours,
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Fig. 8. Correlation between samples of the two distributions, normalized logP (For-
ward Backward algorithm) and normalized LogP (OLPA).

resulting in a total of 42 normal behaviours and 22 abnormal behaviours.
Each behaviour has been performed by one of three different actors, through
random selection. Out of the 22 abnormal behaviours, 14 are abnormal based
on the motion features (e.g. abrupt motion) and 19 are abnormal based on
the trajectory — which means that some behaviours are abnormal for both
criteria used. It should be noted that the same activities performed by different
actors can differ greatly. The videos with normal behaviours illustrate a person
entering the room, buying a ticket, browsing and looking around for several
minutes and exiting the room using a preset path. The abnormal behaviours
consist of running, abrupt motion or unexpected trajectory.

Our experiments, for offline testing, consist of a test set formed by 4 normal
behaviours per fold, as well as 22 abnormal behaviours that were used in
all the folds. In the offline procedure each classifier makes a decision of the
whole behaviour’s abnormality. The system signals abnormality if any of the
constituent classifiers has indicated abnormality.

The final decision of the observed behaviour’s abnormality is taken by thresh-
olding both classifiers’ (SVM and cHMM) outputs. The thresholds are auto-
matically calculated in the training step, which takes place offline before the
operation of our system. To be more specific, during the training step, videos
with normal behaviours are input to the system, features are calculated and
two classifier models (one class SVM and cHMM) are trained and stored.
Then, using n-fold cross validation to ascertain generality, the cHMM’s out-
put probabilities are stored in order to be processed and used to extract the
thresholds based on distributional characteristics (mean value, standard devi-
ation and minimum value; also see equation 14). For the decision concerning
the SVM classifier, we also extract a threshold which indicates the maximum
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number of abnormal frames we allow within a normal, predefined length se-
quence of frames. Therefore, SVM decisions are also used to determine this
second threshold. At this point the system is considered to be calibrated. In
case someone wishes to apply the system at a different location, only the train-
ing step needs to be repeated and the system will be applicable to the new
environment.

The experiments prove that the system is highly automated, as minimum
human interference is needed during the training step and the results are very
encouraging. We remind the reader that in the background subtraction step
the first 250 frames are used for training, where no person is inside the scene.
Those frames are used to extract the background edges (also see section 5.1).
Features identifying short-term behaviour are extracted and used to train an
one-class SVM with a radial-basis function kernel. Simultaneously, trajectories
were extracted in order to be inserted into a continuous HMM for training.

The threshold values have been calculated based on the training test. In Figure
9, distributions of SVM and cHMM outputs for normal as well as abnormal
behaviours are shown. Figure 9a depicts the normality percentage for normal
and abnormal behaviours within a time window that includes the whole be-
haviour, i.e. how many feature vectors are recognized as normal in the entire
behaviour. We used a t-test in order to ensure that the two density functions
are different and the resulted p-value was < 1%. Because of the fact that the
two pdfs are not Gaussian, we have also applied the Kolmogorov-Smirnov test
or KS-test [3] that does not require normal pdfs. The Kolmogorov-Smirnov
test indicated that, indeed, the normal and abnormal samples come from dif-
ferent pdfs (p-value = 2.09e-07). Figure 9b shows the cHMM'’s output for
normal and abnormal behaviours. The two tests (t-test and KS test) were also
applied to these results with both p-values substantially bellow 1%. According
to the remark that normal and abnormal pdfs are different for both classifiers,
thresholding their outputs was a logical decision.

For SVM-based classification we set the threshold to be the following function
of the mean and the standard deviation of the distribution of the number of
allowed abnormal frames within a normal sequence:

thresholdgyyr = mean(H svmyorma) — 2.5 + std(H svmupormai) (14)

For HMM outputs the minimum value of the distribution of normalized log-
probabilities of the normal instances was considered to be the threshold value
that separates normal trajectories from the abnormal ones:

thresholdgyy = min(Hhmmyormar ), (15)

where Hsvm is the histogram of SVM’s outputs and Hhmm is the histogram

24



HMM SVM

3 : T 16 : . :
I =bnormal I abnormal
[ 12+
w = %]
g 20 5 "l
2 2
[ o °
3 15 -]
g U sl
L [}
I 1ot L'i:
4
or 2|
0 / S NN ..
X% -0 25 20 -15 -10 G 0 10 20 30 40 50 8O 7 8 90 100
Log Probability of HMM output / length of sequence Normality percentage of SVM output

Fig. 9. a. Percentage normality in normal and abnormal behaviours for Support
Vector Machine, b. output of continuous Hidden Markov Model for normal and
abnormal behaviours. Black color is for normal behaviours and red for abnormal
behaviours

with HMM'’s outputs.

7.4 Real-Time Ezxperiments

In both the online and offline approaches the same training set (therefore the
same models) and thresholds have been used. The only difference is that in
the online approach we had the system emit a decision for every frame instead
of for the whole behaviour. The system performance in both approaches is
encouraging, as will be shown in the following pargraphs.

Real time experiments follow a slightly different approach. Each frame is la-
beled as normal or abnormal depending on both classifiers’ decision. All the
videos contain 34479 normal frames, i.e. frames for which the behaviour should
be judged as normal, and 5260 abnormal frames. From the 4537 frames 1251
have motion-based abnormality and 4537 have trajectory-based abnormality.
The SVM classifier classifies a frame, but the SVM-based decision also takes
into account the labels of the previous 24 frames, based on the percentage
of abnormal frames within this history of 25 frames. The cHMM returns a
normalized log-probability value which characterizes the object’s sampled tra-
jectory since the object’s first appearance in the scene and up to the current
frame. The final system result for each frame is the logical “or” of these two
outputs, where the value “true” indicates a decision of abnormality for a given
frame.
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Table 2
Precision and Recall for the 3-camera System on our dataset. The column “Overall”
indicates the performance of the combined decision.

Offline
SVM HMM Overall

Precision Recall | Precision Recall | Precision Recall

Normal 0.9048  0.9286 1 0.9762 1 0.9286
Abnormal 0.7674  0.7071 0.95 1 0.88 1
Real-time
SVM HMM Overall

Precision Recall | Precision Recall | Precision Recall

Normal 0.9875 09228 | 0.9960 0.9770 | 0.9960  0.9105
Abnormal 0.2419  0.6788 | 0.8478  0.9704 | 0.8478  0.9375

7.5 Owerall system performance

Precision and recall have been calculated for the offline and the real-time
experiments. For each approach we give the performance for both the SVM
and HMM classifier models separately, as well as for the whole system in table
2.

Even though the overall system performance is very satisfactory, we should
note that the precision of motion-based abnormal instances, through the use
of the SVM classifier, appears to be low. This indicates that we should further
optimize SVM parameter values to the given classification problem, as it has
been seen in literature that SVM performance can be highly dependent on the
selected parameters. However, the simultaneous use of both classifiers helps
the system perform highly for the given dataset.

7.6  Multiple cameras vs. One camera

To clarify the reasons for using multiple cameras instead of one camera, we
have performed a set of experiments only with the data of one camera from
our lab dataset. The system’s results (precision and recall) are shown in Table
3. As we can see the system’s performance is lower than the one produced by
multiple cameras, due to the fact that one camera is not able to give as robust
ground point estimation of the object as the estimation given by multiple
cameras. Moreover, multiple cameras provide the benefit of more information,
especially in the case where the object is not within the view of one of the
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Table 3
Average Precision and Recall for the Single-Camera System on our dataset.

Offline
SVM HMM Overall

Precision Recall | Precision Recall | Precision Recall

Normal 0.9788  0.8375 1 0.95 1 0.8
Abnormal 0.6708  0.9464 0.913 1 0.7366 1
Real-time
SVM HMM Overall

Precision Recall | Precision Recall | Precision Recall

Normal 0.9945 09148 | 0.9953  0.9597 | 0.9975  0.8525
Abnormal 0.2696  0.8569 | 0.7544  0.9637 | 0.5042  0.9861

available cameras.

It is worth pointing out that in the table 3 we average precision and recall
taking into account two of our three cameras, due to the fact that the third
camera could not give us proper output since the object was frequently out of
its view. The multi-camera system overcomes this problem by compensating
for any missing camera data. In addition, as we can observe from tables 2
and 3, cHMM precision and recall in both offline and real-time experiments,
are greater with multiple cameras than with only one camera. On the other
hand, precision and recall in both offline and real-time experiments for SVM
are in most cases higher in the single camera system than in the multi-camera
system. These observations have led us to two main conclusions. The first is
that our assumption that multiple cameras provide us with a more precise
position of the object (more accurate trajectory) is correct. The second is
that our application of trivial fusion of motion data from different cameras —
we just calculated mean feature values over the three cameras — can cause a
decrease of performance and should be avoided. Future work should research
how motion feature values from different cameras should be combined.

In order to further allow for solid comparison, we have chosen to use a com-
monly used dataset for additional comparisons. The corpus chosen is the set
of video sequences available for result comparison from the PETS04 workshop
[40]. The sequences have already been used by the CAVIAR project. The sys-
tem’s performance when applied on these data are depicted in Table 4. It is
worth mentioning that:

e the scenarios in this dataset are different from the scenarios we have as-
sumed.
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Table 4
Precision and Recall of the Single-Camera System, when applied on the CAVIAR
dataset

Offline Overall Real-time Overall

Precision Recall | Precision Recall

Normal 0.8882 0.775 0.7625 0.7309
Abnormal 0.3129 0.5125 0.2273 0.2582

e 1o restricted areas have been defined therefore cHMM performance is not
included in the results, since the results of the cHMM indicated normal
trajectories and were, therefore, useless.

e in the CAVIAR dataset, there is no explicit definition of normality and
abnormality. Thus, we have considered “running” and “fighting” to be ab-
normal, while all the rest were considered to be normal.

From the CAVIAR dataset we have used only videos from a single camera view.
There were 11 normal behaviour videos* and 4 abnormal®. The extracted
different behaviours were a total of 43 normal and 8 abnormal ones. The
number of frames was 12188 normal and 2669 abnormal.

In the CAVIAR dataset evaluation of performance, the detection of abnor-
mal behaviour appears to be more difficult than in our dataset. Given this
difference in performance, we have sought the reasons for the decrease in ef-
ficiency and found some possible causes. In our use of the CAVIAR dataset,
we used the whole videos described as cases of “walking”, “browsing” and
“meeting” as input for normal behaviour. We then discovered that a quick
(running) motion can be found within a walking video, inducing noise in the
discriminative ability of the speed-based features. Then we saw that occlusion
may have caused problems, due to the fact that there are data from only one
camera. The edge-detection process and the optical flow extraction fail when,
for example, two people are too close the each other and fighting. In these
cases the positioning of the targets with respect to the camera highly affects
the method concerning the use of optical flow, but only when a single camera
is used. The use of three cameras and proper fusion of information may offer
better optical edge detection and, thus, optical flow values. The two identi-
fied problems partially explain the loss of recall for abnormal instances, even
though more experiments should be conducted to verify these findings. One
final comment would be that abnormality in such actions as fighting can be
detected much more easily if one uses interaction information between actors,
which was not within the scope of this work.

4 Namely the normal videos were: browsel-browse4, wk1-wk3,
meetSplit3rd Guy,meet WalkSplit,meet Walk Together1-meet Walk Together2.

® Namely the abnormal videos were:FightChase, FightOneManDown,
FightRunAway1-FightRun Away2
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8 Conclusion and Future Work

In this paper, we have presented a set of theoretical and practical tools for
the domain of behaviour recognition, which have been integrated within a
unified, automatic, bottom-up system based on the use of multiple cameras
performing human behaviour recognition in an indoor environment, without
a uniform background. The approach’s innovation is four-fold:

e We propose the application of two different criteria of human behaviour’s
abnormality used within a single methodology that needs only normal data
for training.

e We have proven that the application of multiple cameras can be fruitful,
when it comes to determining abnormality based on the trajectory.

e We have presented a methodology that lets a continuous Hidden Markov
Model function as an one-class classifier, with very promising experimental
results.

e We have accomplished to offer an alternative to the Forward Backward
algorithm for the recognition step of cHMMs in order to overcome arithmetic
underflow in the case of very long observation sequences, without loss of
precision.

Our experimental results demonstrated the good performance of the system in
the task of recognizing human behaviour’s abnormality in a somewhat noisy
environment, with different scenarios of action and participation of different
actors. The experiments were implemented in offline and real-time conditions,
with similar results, implying the robustness of the method. Furthermore,
experiments with a single camera version of the system provide us the incentive
to consider another, more robust method for the fusion of data in order to
improve performance.

The multiple camera methodology has, so far, been tested on scenarios with
only one object inside the scene, without taking account any interactions be-
tween actors. It would be worthwhile to further investigate the effectiveness of
our system using more features, such as the distance of the object from each
camera, in order to improve the motion-based discriminatory performance of
the system. However, other methodologies could also be tested in the place of
the SVM classifier.
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