
Vision-Based Production of Personalized

Video

D. I. Kosmopoulos a A. Doulamis b A. Makris a N. Doulamis c

S. Chatzis c S. E. Middleton d

aNCSR Demokritos, Inst. of Informatics and Telecommunications, GR- 15310,
Greece

bTechnical University of Crete, Chania, Crete, Greece
cDepartment of Electrical and Computer Engineering, National Technical

University of Athens, GR-15773, Greece
dIT Innovation Centre, Southampton SO16 7NP, UK

Abstract

In this paper we present a novel vision-based system for the automated production
of personalised video souvenirs for visitors in leisure and cultural heritage venues.
Visitors are visually identified and tracked through a camera network. The system
produces a personalized DVD souvenir at the end of a visitor’s stay allowing visitors
to relive their experiences. We analyze how we identify visitors by fusing facial
and body features, how we track visitors, how the tracker recovers from failures
due to occlusions, as well as how we annotate and compile the final product. Our
experiments demonstrate the feasibility of the proposed approach.
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1 Introduction

A major part of the success of a museum, a gallery or a theme park is the total
experience it offers and how it engages the visitor. One of the visitors’ main
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concerns is to capture the visit, either by photographing or by videotaping the
venue and their experiences in it.

However the results are usually not satisfactory, due to the limited visitors’
filming experience, the generally low quality of the equipment that most visi-
tors use for capturing, the inappropriate configuration of the media handling
devices to the specific venue conditions and the limited efforts that often the
visitors make. If the shoting is done by the visitor that person is left out of
the content. Shoting from locations that are inaccessible for the visitors is
not possible, e.g., at a roller coaster taken from above. Moreover, in certain
venues such as museums video cameras are not permited. As an alternative
some parks sell DVDs with a ”typical” day in the park, however these are
not interesting since the people appearing in them are unrelated to the cus-
tomer. PhotoPass [1] is a service offered in some entertainment parks, however
it requires the presence of professional photographers, and the production is
done manually, with obvious consequences to the cost. Recent scientific and
technical advancements allow the automated production of personalized video
content from the visit, which can be acquired by several cameras that are lo-
cated at key points of the park or venue and are triggered by the presence of
the persons who have asked for the service.

Nowadays, the few systems that are available for this purpose use Radio Fre-
quency Identification tools, called RFID’s for triggering media acquisition due
to the relative simplicity of the involved technology, e.g., [2]. In those systems,
Radio Frequency (RF) receivers are placed in appropriate locations. The user
that has asked for the service has to carry a transmitter and as she passes
near the RF receivers her location is registered and the cameras that monitor
the specific area are activated. However, the use of RFIDs is problematic in
several cases because the receiver is only activated when the emitter is within
the receiver range (practically a few meters). The exact positioning can be
defined only by using complex installations with multiple receivers and is not
always possible, especially when the target moves within larger areas following
unpredictable trajectories. Furthermore, the use of RFIDs is very unreliable
and very often not possible at all in rides with large metal parts, e.g., the
bumper car ride, due to signal reflections.

Recent advances in computer vision and surveillance systems have made feasi-
ble installations that will be able to detect, recognize, localize and continuously
track the visitors of thematic parks using visual input, which does not suffer
from the previous drawbacks. A detailed survey of methods and systems used
in visual surveillance can be found in [3]. The proposed system capitalizes on
these recent advancements and goes one step further by automatically acquir-
ing, organizing, streaming and creating personalized videos. According to our
knowledge it is the first such system for the purposes of the leisure industry.
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According to the use scenario the visitor has to be registered in a dedicated
booth, where a camera captures face and body images. When the visitor enters
the venue she is viewed by identification cameras (i-cams). A unique ID is
assigned to the visitor and matching is performed between the i-cam and one
of the cameras that are used for tracking (t-cam). As long as she is in the
Field of View (FOV) of the deployed cameras she is tracked across several t-
cams maintaining the same ID. The cameras within the theme park will work
simultaneously for multiple visitors. Moreover, remotely located people (e-
visitors) may enter the Internet, through their terminal devices (PCs, mobile
phones, PDAs), to watch their tour in real time. This way, the visitors can
share their experiences with remote friends or the family. The final digital
product is automatically produced when the visitor decides to leave. It may
comprise edited video, still images, promotional material or raw content based
on user preferences.

To achieve the aforementioned goals we have created three sub-systems: real-
time, offline and on-demand processing (see figure 1). The real-time sub-system
uses video input from cameras positioned around the venue to identify visitors
using face and body models and to track them at almost frame rate; then it
records raw footage and creates MPEG-7 metadata describing the visitor-
specific footage. Part of the same sub-system is the adaptive streaming, which
provides video streams for viewing by visitors’ nominated e-visitors. The offline
sub-system performs background processing to collect and enrich the visitor-
specific metadata by semantic information to support efficient content-based
footage retrieval when the final edit is created. The on-demand sub-system
initially allows visitors to be registered with the system; as soon as the visit is
completed it uses the raw footage, the visitor-specific metadata and the film
template to create the final video edit and souvenir DVD; the same subsystem
provides interfaces to visitors, e-visitors and administrators.

The main innovative features of the proposed system, which will be further
described in the next sections, are:

• a person identification framework combining facial and body matching using
a linearly optimized or a neural network based fusion scheme;

• a hierarchical particle filtering framework for real-time tracking, enhanced
with recovery mechanism for occlusion handling;

• an automated production system using feature-augmented grammar.

In the next section we survey the recent developments in human recogni-
tion, tracking and automated production, on which our system capitalizes.
We provide details on the real time subsystem in section 3 emphasizing on
the innovative features of the system. Similarly in the section 4 we describe
the on demand subsystem. In section 5 we provide the system setup and the
experimental results that verify the system capabilities in subsystem and in
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overall system level. In section 6 we discuss the results of our research and
finally in section 7 we conclude this paper.

Fig. 1. The system architecture

2 Related work

As mentioned above, the architecture integrates several different research ap-
proaches in order to provide to the visitors of a venue professional mementos
regarding their activities. We have stated in Section 1 that the current systems
that are available for this purpose exploit Radio Frequency (RF) mechanisms
for human identification and tracking. We extend the current state-of-the-art
by using visual input. Thus, before presenting related research approaches, we
recall that the system includes modules for a) human identification by exploit-
ing the visual information, b) human tracking, c) automated video production.
In the following subsections, we state the current techniques that provide the
research background for the most important modules.

2.1 Human recognition

The main idea behind the proposed work is to build a system based on passive
and non-intrusive sensors able to identify and track humans. The face recogni-
tion technology lends itself as a feasible solution for identifying humans in the
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environment of a leisure park. Over the last years, Automated Face Recog-
nition technology has shown dramatic improvements. In [4] it is shown that
there are now algorithms that surpass the human operators in both easy and
difficult illumination conditions using the testsets and algorithms of the Face
Recognition Grand Challenge 2006 (FRGC-06). In [5] the MID database was
used. 29.2 percent of human subjects performed better than the best algo-
rithm, while 37.5 per cent performed worse.

In [6] the results of the FRGC challenge are provided. Specifically, for recog-
nition using frontal facial images under controlled conditions the recognition
rates for the best algorithms were almost 100 percent. The results for all
alorithms were better when four target and query images were used. The best
algorithms using as target a single controlled image and as query a single
uncontrolled still image provided success rates of about 80 percent. This ex-
periment is closer to the general case of image acquisition in uncontrolled
environment. As general comment the more controlled is the environment and
the more images we use for target modelling and querying, the higher are the
recognition rates.

Despite the progress made recently in face recognition techniques, the recog-
nition process seems to benefit from employing additional non facial features,
e.g., from body. In [7] different visual features have been compared for body
recognition and the Colour Structure Descriptor (CSD) achieved the high-
est recognition rate. In [8] people are recognised based on color and shape
features and an SVM classifier is used. The use of Gaussian mixtures for mod-
eling color is another attractive alternative. In [9] different distances between
two Gaussian mixtures are compared (Bhattacharyya, Symmetric Kullback-
Liebler, C2).

Specifically for outdoor environments the illumination variations may affect
the results provided by the color model and therefore algorithms have been
proposed for color constancy, i.e., for recognizing colors of objects indepen-
dently of the color of the light source. Some of the most popular ones are
the Grey-world assumption, which assumes that the spatial average of surface
reflectances in a scene is achromatic and the Gamut-mapping, which recovers
the transform that best projects the measured gamut into that of a canoni-
cal (see e.g., [10]). In [11] it is shown that both algorithms improve the color
constancy for the visual surveillance scenario. The Grey-world method can be
implemented in real time while the Gamut-mapping not. These methods must
be used with caution since the changes of the image content may affect their
performance. The problem of seeing the same color in two cameras is handled
by using color calibration techniques (e.g., [12]).

As we are going to present in section 3 we have combined a face recognizer
(using multiple images for modelling and querying) with a body recognizer.
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We have tried to control the illumination and we have used color constancy
and color calibration techniques.

2.2 Target tracking

To effectively address the problem of continuous, uninterrupted human track-
ing throughout a complex and extensive surveyed terrain (as dictated by our
system requirements), a network of multiple cameras with overlapping FOV
must be spanned across the area of interest. Such a system must incorporate
effective algorithms (a) for tracking in the FOV of a single camera and (b) for
tracking across cameras with overlapping FOV.

The taxonomy of the single-camera tracking methods includes point tracking,
kernel tracking and silhouette tracking as categorized in [13]. Point tracking
methods are adequate only for targets that are small and can be represented
by points, but can be used for assisting purposes using meshes of points.
Silhouette tracking methods provide the highest flexibility in the tracked shape
but they do not handle explicitly the occlusions. The kernel - based methods
assume the existence of a model for the tracked object (e.g., contour) and
perform transformations on it to find a good match. Given that the kernel-
based methods handle explicitly the occlusion problem we have focused on
them.

Recently the SMC methods (Sequential Monte Carlo) (e.g.,[14]) also known as
particle filters have been applied in kernel-based tracking. They can cope with
multimodal distributions such as those emerging from a cluttered environment,
they are relatively simple and they provide a framework to fuse different cues.
These methods are probabilistic and treat the location of the tracked object
as a probability density function, which they attempt to estimate by drawing
samples from it. The basic elements that those methods require are: an object
model (internal target representation, e.g., contour, bounding box, human
body model etc), a dynamic model (used to predict the next state given the
current one) and an observation model, which links the object model to the
data by calculating the likelihood of the object given the state.

The simple object models are fast but incomplete and thus difficult to track,
while the more complex models provide better target representation but are
difficult to initialise and are computationally expensive. There are many works
in the literature using particle filters with a single cue. The most commonly
used cues in these approaches are the edges [15], the color and texture [16],
[17], [18], and motion information [19], [20]. However, these approaches can
only be applied under certain conditions, due to their incomplete object model.
Contour trackers, for example, loose track when many clutter edges are present
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and color based methods perform poorly in the existence of many similar
colored objects. Several approaches for feature fusion have recently appeared
[21], [22], [23], [24]. However, most of these works have high complexity and
may still have problems with background clutter.

We use a novel Bayesian tracking method that overcomes the difficulties posed
by the complex environment, by using several object models, which are up-
dated hierarchically within the particle filtering framework. This approach
enhances significantly the particle filters that use the same features in a non-
hierarchical fashion. The algorithm is robust in various scene conditions. Each
model uses several visual cues to define its likelihood function.

Regarding the target matching in ovelapping FOV, there are several tax-
onomies of the related methods according to the used features and according
to the requirement for camera calibration. A popular approach is to consider
the targets as regions and then to use the features of the regions for matching
in multiple views. Color is a popular feature and is modelled through color
histograms, e.g., [25] or Gaussian color models, e.g., [26]. However, targets
having similar colors, may be poorly matched. Different viewpoints and light-
ing variations may cause the same target to be observed with different colors
in different cameras. Inhomogeneous color may also cause problems if the same
target exposes different colors in different cameras.

There are several approaches that use geometrical constraints, which may
require either camera calibration or a homography constraint based on the
ground plane. The 3D methods transform all points, e.g., target centroids
into the common 3D coordinate system and perform matching based on the
proximity of those points, e.g., [27]. Another approach is to use the epipolar
constraint using only the relative pose of the cameras, e.g., [28].

Methods such as [29] assume that the target moves on a predominant ground
plane. In that work, the homographies between each view and the ground plane
are calculated. Subsequently, foreground likelihoods in all views are computed.
It requires that the foreground blobs comprise the points where the subject
touches the ground, however this is not always the case due to image noise
and occlusions. Using the principal axis of a subject instead of a foreground
likelihood map increases the robustness against noise: Since foreground pixels
corresponding to a person are in general symmetrically distributed along the
principal axis, the errors of monocular motion subtraction are also symmetri-
cally distributed along the axis [30].

We have used a geometric approach due to the generality of the approach as
opposed to methods making the ground plane assumption.
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2.3 Automated Video production

Automated media production systems generally either perform pre-processing
to create a new media item or run post-processing techniques to repurpose an
existing media item.

In [31] automated video creation is used to select and combine camera shots
into films according to predefined rules. The Auteur system [32], is a rule-based
automatic editing system that takes a set of hand-annotated video shots and
combines together sequences (or scenes) that are likely to suggest humorous
content. Rules such as temporal association of an object (e.g., shot of ba-
nana skin) and result (e.g., someone slipping on the skin) are used to infer
meaning (e.g., misfortune). The proposed system uses production rules but
simplifies their creation by using a domain specific template, allowing rules to
be more easily understood by non-technical film directors. This approach is
more practically exploitable in a real system.

Systems such as [33],[34],[35] automatically classify video sequences according
to automatically detected basic characteristics (e.g. pan, zoom, indoor, faces).
These classifications provide the semantic labelling needed for efficient manual
or automatic editing. The semantic annotation system in our system provides
vision-based annotations that are made available to the rule-engine as MPEG-
7 events.

Our approach to media production is interesting in that it processes seman-
tically annotated footage (automatically extracted from live camera footage)
and executes professional film production rules encoded as a film template.
Our film template approach constrains the rule language into a simpler form
and makes it practical to allow non-technical film experts to become involved
in reviewing and developing the production rules.

3 Real time subsystem

3.1 Identification

Considering the state of the art and the related problems we have used a com-
bination of face and body color modeling to recognise humans. The modelling
is performed before entering the venue by capturing several face and body
images from different angles.

The identification process is performed in four steps: (a) segmentation of the
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foreground from the background regions (b) face detection within the fore-
ground regions (c) extraction of features from face and body and separate
matching (d) fusion of facial and body features. By integrating the foreground
extraction step we have two advantages: firstly we limit the application of the
costly face detector to the foreground regions, which are small fractions of the
total image; secondly we separate the body regions from the background and
we use them for recognition.

The foreground extraction has been implemented using the algorithm de-
scribed in [36]. In that work a pixel-level background model is maintained
using a mixture of Gaussian distributions. The background parameters are
updated automatically and the number of the used components per pixel is
also automatically decided. Due to the use of multiple components the al-
gorithm is applicable in outdoor scenes, which include periodic background
motion.

In the extracted foreground region we seek for faces using the algorithm de-
scribed in [37]. Generic Haar features are calculated and fed into a sequence of
classifiers, which is used with the purpose of eliminating the largest number of
negative inputs with little processing at the early stages (only positive results
are further examined). The classifiers in the later stages are more accurate
but combine more complex features. The training of each classifier proceeds
according to the Adaboost algorithm which also selects the most appropriate
features.

We adopt a fusion strategy for identifying the visitors. In particular, two dif-
ferent distance measures are used for the identification process. The first, de-
noted in the following as D1(u, v) expresses the distance of color distributions
between the examined human object u and the v-th stored human object in
the registration database. The second one, denoted as D2(u, v) expresses the
distance of feature vectors that model human facial characteristics. These are
described in the following.

3.1.1 Face and body distances

For the body recognition we have used Gaussian mixture models to represent
body regions. Given that, we need a distance metric for matching the bodies of
currently detected visitor u (represented by pdf p(x)) with the ones previously
stored v (represented by pdf p′(x)). For this purpose we have used the following
metric, as described in [9]:

D1(u, v) = C(p, p′) = − log

2
∑
i,j

πiπ
′
j

√
|Vij |

ekij |Σi||Σ′
j|∑

i,j
[πiπj

√
|Vij |

ekij |Σi||Σj |
]+

∑
i,j

[π
′
iπ

′
j

√
|Vij |

ekij |Σ′
i
||Σ′

j |
]

(1)

9



Vij = (Σ−1
i + Σ

′−1
j )−1 (2)

kij = μT
i Σ−1

i (μi − μ
′
j) + μ

′T
j Σ

′−1
j (μ

′
j − μi) (3)

where π, π
′
the mixing weights, i and j are indexes on the gaussian kernels,

and, finally, μ, Σ and μ
′
, Σ

′
are mean and covariance matrices for the kernels

of the Gaussian mixtures p(x) and p
′
(x) respectively.

It is important to note that due to illumination variations it is necessary to
build a look up table to establish a color correspondence between the colors
of the cameras used in the registration and in the identification process. To
minimise the effect of brightness variation in the same camera, color constancy
techniques were used as will be mentioned in section 5.

For the face recognition functions we used a mainstream PCA - based approach
similar to [38]. Each facial image is projected onto M dimensions by computing

F = [v1, v2, ..., vM ]T (4)

where the i -th coordinate of the facial image in the new space, which came
to be the principal component vi is given by vi = eT

i wi (eT
i are the eigenvec-

tors and wi = xi-m, xi the current image, m the mean image). The distance
D2(u, v) between current and training faces is calculated as the Euclidean dis-
tance of the face vectors as represented by (4). For survey of methods that
could substitute our baseline method the reader is referred to works such as
[6].

3.1.2 Fused distance

Two different approaches are adopted in this paper for fusing the distance
metrics D1(q, j), and D2(q, j). The first approach linearly weighs each metric
to obtain the overall metric used for ranking the humans’ objects. The second
uses a non-linear classifier, which takes as input the three distances and yields
as output estimates of how close is the examined human object to the ones
available in the registration database.

As far as the first approach is concerned, we optimally estimate the weights wi,
with i = 1, 2, which defines the impoartnce of each metric to the overall object
distance through a Mean Square Error (MSE) minimization. In this case the
overall metric can be expressed as D(u, v) =

∑2
i=1 wiDi(u, v). The weights wi

are calculated through training. If for an examined human u, the respective
human in the registration database id v then, the ideal distance metric should
be zero for these two objects u and vu, (that is ID(u, vu) = 0) while it should
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provide maximum values for all the rest ones. Thus, the learning strategy
should estimate the optimal weights wi so that the metric D(u, v) is as close
as possible to the ideal distance metric. That is,

ŵi : minE = min
∑
∀u

∑
∀v

ε2(u, v) (5)

where ε(u, v) = (D(u, v) − ID(u, v)).

Minimization of equation (5) is accomplised by differentiating E with respect
to the weights wi and setting the derivative equal to zero, ∂E/∂wi=0,∀i. Then,
the optimal weigths ŵi are given by

ŵ =

⎡
⎢⎣ a1,1 a1,2

a2,1 a2,2

⎤
⎥⎦
−1

·
⎡
⎢⎣ b1

b2

⎤
⎥⎦ (6)

where al,m =
∑

u,v Dl(u, v)Dm(u, v) and bl =
∑

u,v Dl(u, v)ID(u, v).

The second approach relates the two distances using a non-linear relationship
in order to fit the ideal distance. That is, the overall distance is now pro-
vided by a non-linear function which takes as inputs the two distances Di,
with i = 1, 2 and produces as output an approximation of the ideal overall
metric. It is clear that relating with a non-linear function the three distances
in order to produce the final overall distance metric would result in better
performance rather than using a linear relationship. The main difficulty, how-
ever, in this case, is that the non-linear function that relates the inputs with
the output is actually unknown. Non-linear function approximation can be
achieved through a feedforward neural network classifier. The network uses
a ground truth dataset of distances and is trained to approximate the ideal
metric based on the results of the three distances. That is in this case, the
approximate overall distance metric ND(u, v) is given by

ND(u, v) = fnn(D1(u, v), D2(u, v)) (7)

where fnn is the approximate of the non-linear function as provided by the
neural network.

3.2 Detection and tracking

The first processing step for each captured image is the segmentation of mov-
ing image regions. Given the fact that we use static cameras we employ the
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background subtraction method described in [36] (a) to initialise our tracker
and (b) to limit the regions in which we are searching for solutions to fore-
ground areas. That method employs automatically resized Gaussian Mixture
Model and thus it is appropriate for outdoor scenes, where the background
may be moving periodically.

The initialization is performed by first classifying the person entering the scene
as human using the method described in [39]. We project the foreground pixels
on the horizontal axis, thus obtaining a histogram, which will have a peak close
to the head region. We also check for curvature maxima around that region.
After obtaining the head we fit a model for the upper part of the body and
we start tracking it.

3.2.1 Bayesian Tracking/Particle Filters

In this section we provide the background for Bayesian tracking and the SMC
methods which will be used to explain the proposed method. Let {xt; t ∈ N}
be an unobserved state of the target and {zt; t ∈ N} the observations for
every time step, t. The Bayesian tracking consists of calculating the posterior
p(x0:t|z1:t) at every step, given the measurements up to that step and a prior,
p(x0). The solution is expressed as:

p(x0:t|z1:t) = p(x0:t−1|z1:t−1)
p(zt|x0:t, z1:t−1)p(xt|x0:t−1, z1:t−1)

p(zt|z1:t−1)
(8)

In most practical problems the state is considered a first order Markov process,
i.e., p(xt|x0:t−1, z1:t−1)=p(xt|xt−1) and the current measurements are consid-
ered independent of the previous measurements and states given the current
state, i.e., p(zt|x0:t, z1:t−1) = p(zt|xt). Under these assumptions equation (8)
becomes:

p(x0:t|z1:t) = p(x0:t−1|z1:t−1)
p(zt|xt)p(xt|xt−1)

p(zt|z1:t−1)
(9)

To recursively calculate the posterior, the terms involved in (9) have to be
evaluated. The likelihood, p(zt|xt), and the prior, p(xt|xt−1), are calculated
using the selected measurement and dynamic model respectively. The evidence
is given by: p(zt|z1:t−1) =

∫
p(zt|xt)p(xt|z1:t−1)dxt

The particle filtering (PF) methods are used to approximate the above proba-
bilities. They use samples (particles) to estimate the involved pdf’s [40], [41].

Given N weighted particle trajectories {x(n)
0:t−1}N

n=1 with importance weights

{w(n)
t−1}N

n=1, up to time t−1, which approximate the distribution p(x0:t−1|z1:t−1),

the SMC methods compute N particles {x(n)
t }N

n=1 which are combined with the
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previous trajectories to form {x(n)
0:t , w

(n)
t }N

n=1, which approximates the posterior
p(x0:t|z1:t), up to time t according to:

p̂N(x0:t|z1:t) =
N∑

n=1

w
(n)
t δ(x0:t − x

(n)
0:t ) (10)

This approximation of p(x0:t|z1:t) follows the importance sampling technique
[14]. This technique relies on the use of another, so called proposal distribution
q(x0:t|z1:t), from which it is easy to sample instead of sampling directly from
p(x0:t|z1:t). Then the samples are weighted by:

w
(n)
t =

p(x
(n)
0:t |z1:t)

q(x
(n)
0:t |z1:t)

(11)

The proposal distribution q is selected to factorize as (using the Markov as-
sumption):

q(x0:t|z1:t) = q(xt|xt−1, zt)q(x0:t−1|z1:t−1) (12)

to be able to update the weights recursively. The steps of the general Sampling
Importance Resampling (SIR) [40] algorithm are:

• Select N samples {x(n)
t }N

n=1 from the proposal q(xt|x(n)
t−1, zt).

• Weight each sample, n, using the following equation which results if we
replace (9) and (12) in (11):

w
′(n)
t ∝ w

(n)
t−1

p(zt|x(n)
t )p(x

(n)
t |x(n)

t−1)

q(x
(n)
t |x(n)

t−1, zt)
(13)

• Normalize the weights so that their sum equals one:

w
(n)
t =

w
′(n)
t∑N

n1=1 w
′(n1)
t

(14)

• Resample the resulting particle set {x(n)
0:t , w

(n)
t }N

n=1 by multiplying or dis-
carding particles according to their weight so that the new set will be un-
weighted and with the same number of particles.

A very common realization of this algorithm uses the prior p(x
(n)
t |x(n)

t−1) as
proposal distribution which if replaced in (13) results in the weights updated

by the likelihood p(zt|x(n)
t ) [15].
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3.2.2 Proposed Tracking Algorithm

Our proposed algorithm uses a novel Bayesian tracking framework, an early
version of which was briefly presented in [42]. The state (feature vector) x is
composed by M parts x[i], which correspond to probabilistically linked models
of increasing complexity as follows:

x = [xT
[1],x

T
[2], . . . ,x

T
[M ]]

T (15)

The simple models are updated first and then we are able to evaluate the
conditional probability of the more complex models given the states of the
simpler ones. For each model, one or more visual cues are used to define the
likelihood. The last model (main model) is used to define the target area and
is the one which needs to be estimated. The rest of the models are refered as
auxiliary and their purpose is to provide better priors for the main model.

The steps of the algorithm for the t-th frame are:

For i = 1 to M do:

• Resample the particle set by selecting/discarding particles according to their
weight so that the resulting set is unweighted and with the same number of
particles.

• Update, the i-th model’s particles by sampling from:

q(x[i]t|x[1:i−1]t,x[i:M ]t−1, z[i]t) = p(x[i]t|x[i]t−1)p(x[i]t|x[i+1:M ]t−1,x[1:i−1]t)(16)

• Weight the obtained samples by:

w
(n)
[i]t ∝ w

(n)
[i]t−1

p(z[i]t|x(n)
[i]t )

p(x
(n)
[i]t |x[i+1:M ]t−1,x[1:i−1]t)

(17)

In the above equations p() indicates the probability density function and x[i]t,
z[i]t are the state and measurement for the i-th model at the t-th frame. x[1:i]t,
z[1:i]t are the states and measurements for all models 1 to i at the t-th frame.

The w
(n)
[i]t , x

(n)
[i]t denote the weight and the state of the n-th particle for the i-th

model and the t-th frame. The intution behind eq. (16) is that the proposal is
given by the product of probabilities of (a) the current model given its previous
state and (b) the current model given the current states of the simpler ones
and given the previous state of the more complex ones.

The auxiliary models use an adaptation procedure to re-initialize when they
seem to lose track. For the adaptation procedure, we use a tracking confi-
dence measure fstc(·) which is calculated for each auxiliary model i < M by
measuring the compatibility to the main model. If this falls below a prede-
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Fig. 2. Particle Update for model i at time t. (a) The pdf and particles at time t−1.
The darker the color the higher the weight. (b) Resampling step, the particles are
selected according to their weights. (c) The proposal distribution from which the
new particles are drawn is formed by fusing information from the current model’s
previous particles and from the rest of the models (see eq. 16). (d) The new particles
are weighted by the measurement model to approximate the posterior at time t (see
eq. 17).

fined thresshold the auxiliary model is deleted and a search for new features is
performed to re-initialize it within the target area defined by the main model.

To satisfy the trade off between good tracking performance and efficiency we
apply two models. The simple one is a set of salient points (corners) within the
object; the more complex is the contour of the tracked object (main model).
The combined state vector becomes: x = [xT

[SP ],x
T
[C]]

T where x[SP ] = x[1]

represents the centroid of all salient points and x[C]=x[2] represents the contour
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spline curve through six parameters.

For the calculation of x[SP ] Np points are used but each of them is updated
independently so the dimension of the search space does not increase with the
number of points. The model is determined by calculating the Sum of Squared
Differences (SSD) in a rectangular mask around the candidate point and the
original in the previous frame:

x[SP ] =
Np∑
j=1

xSPj
LSSD(j) (18)

where xSPj
are the coordinates of the j − th salient point.

LSSD(j) =
1

σp

√
2π

exp

{
−d2

SSD(j)

2σ2
p

}
(19)

dSSD(j) =

√∑
x,y

[T (x, y) − T
(j)

(x, y)]2 (20)

where T (x, y) is a n × n mask around a candidate point, T
(j)

is the n × n
frame around the j-th original point and σp is experimentally defined.

We assume that these points belong to the object so they must lie inside the
curve. However, the object being tracked might not be rigid so these points
might move relatively to the curve; therefore the model linking the points with
the curve cannot be deterministic. Through the experiments we concluded that
a simple Gaussian model is adequate to link them. Since we know the relative
positions of the points and the curve, DCP , in the initial frame, we can
calculate the estimated position of the curve at each step given the updated
point positions (second term of product in eq. 16) and then sample from a
Gaussian around that position (denominator in eq. 17) given by:

p(x[C]t/x[SP ]t) =
1

σr

√
2π

exp

{
− [x[SP ]t − DCP ]2)

2σ2
r

}
(21)

The adaptation metric for the salient points model is calculated by the fol-
lowing equation:

fstc(xSPjt,x[C]t) =
N∑

n=1

L
(n)
SSD(j)p(z[C]/x

(n)
[C])N(x

(n)
[C]t + x

(n)
RSPjt, σ

2
psc

) (22)

where, xRSPjt is the initial relative position of the j − th spot and the curve’s
center of mass, and σpsc is a variance parameter which is determined empiri-
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cally. If this measure is below a predefined threshold the spot is deleted. The
summation is over the particles. This metric takes low values for spots which
have low likelihood particles corresponding to high likelihood curve particles
and vice-versa.

For the calculation of p(x[C]t/x[C]t−1) (first term of product in eq. 16) we use a
Gaussian around the previous contour position. Thus the q(x[C]t/x[SP ]t−1,x[C]t−1, zSP , zC)
can now be calculated from equation 16.

The next step is the calculation of p(z[C]t/x
(n)
[i]t ) (nominator in eq. 17). For each

sample we define:

p(z[C]/x[C]) = LCHLCE (23)

The LCE estimates how well the edges fit the current contour, while LCH

estimated how well the color of the surrounded region fits the template by
calculating the corresponding Bhattacharyya distance:

LCH =
1

σclh

√
2π

exp

⎧⎨
⎩−d2

bht(H(x[C]), H(x
(n)
[C]))

2σ2
clh

⎫⎬
⎭ (24)

where H(x
(n)
[C])) is the histogram for the n curve particle, H(x[C]) is the curve’s

template histogram and σclh
is the variance. The dbht(·) denotes the Bhat-

tacharyya distance defined as:

dB(H1, H2) =

√√√√1 −
m∑

u=1

√
[H

(u)
1 H

(u)
2 ] (25)

where the summation is over the m histogram bins.

LCE =
1

σcle

√
2π

exp

⎧⎨
⎩−f 2

cl(x
(n)
[C])

2σ2
cle

⎫⎬
⎭ (26)

Where fcl(·) is a metric which determines how well the edges fit the current
contour, and σcle

is the variance.

3.3 Tracking Recovery

To overcome the difficulties posed by full or partial occlusions, we need an au-
tomatic recovery mechnanism able to re-initialize the tracker each time that
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we consider its performance unacceptable. Tracking recovery is performed by
an object modeling mechanism, which labels image regions with a probability
of belonging to one of the available tracked objects in the scene. The color and
texture properties are used as appropriate attributes of an image region since
they can describe it adequately within small time windows. To address, how-
ever, color/texture fluctuations due, for example, to illumination variations,
we introduce an adaptable object modeling algorithm which will be of higher
computational complexity but also more accurate than tracking (due to its
global nature) and will be executed once every k frames modeling the regions
enclosed by the tracking curve. The model will be backprojected in the image
each time the tracker posterior (9) falls below a predefined threshold (defined
ad-hoc). This mechanism copes with the non-linearities that map color and
texture properties of image regions to particular objects.

The color and texture properties of an image region are modelled using some
of Discrete Cosine Transform (DCT) coefficients for each 8x8 image block.
Let us denote as ai(n) a feature vector which contains the DC and some AC
coefficients of the DCT for the i-th image block of the n-th frame. Let us also
denote as y(ai(n)) = [y1(ai(n)) y2(ai(n)) · · ·yK(ai(n))]T a vector each element
of which ym(ai(n)) expresses the probability the i-th image block of the n-th
frame to belong to the m-th tracked object.

Function ym(·) is an unknown non-linear function, which maps the color tex-
ture properties of an image block to m-th object. However, using concepts
from functional analysis, we can parametrize any non-linear function (with
some assumptions on its continuity) as a series of known functional compo-
nents,

y(ai(n)) ≈
N∑

j=1

cj(n)φj(ai(n)) (27)

where in the previous equation we have omitted subscript m for simplicity.
The φj(·) refer to the known functional components, while cj(n) are the re-
spective coefficients and N is the order of approximation for the n-th frame.
For convenience, we can use functional components of the same type. One
common choice regarding the type of the functional components φ(·) is the
sigmoid functions, defined as 1/(1 + exp(−x)). This is due to the fact that
sigmoid is bounded, monotonically increasing and continuous, which are the
requirements that the functional components should satisfy. In this case, we
need an additional parameter, say qj(n) for scaling the φj(·). This means that
φj(ai(n)) = φ(qj(n), ai(n)). One common choice for scaling the sigmoid func-
tion is through the inner product between qj(n) and ai(n), that is equation
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(27) is expressed as

y(ai(n)) ≈
N∑

j=1

cj(n)φ(qj(n)T · ai(n)) = cT (n) · f(n) (28)

where c(n) is a vector that contains all the coefficients cj(n) and f(n) =
[φ(q1(n)T ·ai(n)) · · ·φ(qN(n)T ·ai(n))]T is a vector valued function. If we form a
matrix Q(n) that gathers all vectors qj(n), that is Q(n) = [q1(n) · · ·qN(n)]T ,
then vector f(n) can be written as

f(n) = φ(Q(n) · ai(n)) (29)

In equation (28), the unknown parameters that shoud be estimated are the
coefficients cj(n) and qj(n). These parameters are computed by the use of a
recursive learning strategy which is described in the following.

Let us assume that a reliable mask for the m-th tracked object has been
extracted by tracking. Then, a set, Om, is constructed which contains all image
regions of the m-th object. Let us also denote as B the set of the background
image regions. Then, the output of a classifier that recognizes Om should be
y(ai(n)) = ti, where ti = 1, ∀i ∈ Om and ti = 0, ∀i ∈ B.

Since the color and texture properties either for the tracked objects or for the
background slightly change from frame to frame, we can assume that the co-
efficients c(n) and Q(n) are derived from the previously estimated coefficients
c(n− 1) and Q(n− 1) plus a small perturbation, that is c(n) = c(n− 1) + dc
and Q(n) = Q(n−1)+dQ. Under such assumption, we can linearize equation
(28) using a first order Taylor series expansion. In particular, equation (29) is
written as

φ(Q(n) · ai(n)) = φ(Q(n− 1) · ai(n)) + D · dQ · ai(n) (30)

where D is a diagonal matrix that contains the derivatives of the φ(qj(n −
1)T · ai(n− 1)) with respect to the parameters qj(n− 1). Then, by combining
c(n) = c(n − 1) + dc and the previous equation and ignoring second order
derivatives, we can conclude that

y(ai(n)) = y(ai(n)|Q(n − 1), c(n − 1)) + [dc dq1 · · ·dqN ]T · [u r1 · · · rN ](31)

where y(ai(n)|Q(n − 1), c(n − 1)) denotes the output of the classifier at the
current image region but using the previous coefficients, that is

y(ai(n)|Q(n − 1), c(n − 1)) = cT (n − 1) · φ(Q(n− 1) · ai(n)) (32)
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while vectors u, r1,...,rN are related with the previous coefficients as follows

u = φ(Q(n− 1) · ai(n)) (33)

and

rl = cl(n − 1)dlai(n) (34)

where dl is the l-th element of the diagonal matrix D.

We recall that at the frame on which learning strategy is activated the output
of the classifier is y(ai(n)) is known and equals ti. In this case, we denote as
ei(n) the difference between the actual target output and the one provided
by the classifier using the coeficients before the adaptation, that is ei(n) =
ti−y(ai(n)|Q(n−1), c(n−1)). The error ei(n) is related with a linear equation
with the small pertrurbations dc, dqj (see equation (32)). In order to reliably
estimate the coefficeints for the adaptive non-linear model, we should take into
account the effect of all image regions for the m-th object, and the background,
i.e., for all elements of sets Om and B. Usually, however, a precise estimation
of the adaptive coefficients can be derived by also gathering information for
the same object but at different frames. In this case, a set of linear equations
are formed, and the perturbations of dc and dqj are given by

[dc dq1 · · · dqN ] = (ΓT · Γ)−1 · ΓT · e (35)

where vector e contains all the differences ej for all image regions and frames
and Γ a matrix which includes the respective values of u, r1, r2,...,rN for all
error differences ej(n).

3.4 Multi-camera tracking

The multicamera tracking consists of two phases: the offline camera registra-
tion and the online tracking. The offline procedure is related to the calculation
of camera geometry, while in the online phase the tracking is performed. The
object tracking extracts the correspondences between the multiple views of a
tracked object, using the obtained epipolar geometry information.

In the offline procedure we firstly estimate the camera geometry, which is
expressed by the fundamental matrix (see, e.g., [43]). We have evaluated a
number of different algorithms proposed for the estimation of the fundamen-
tal matrix. Firstly, we evaluated the regression-based approaches (ordinary
least squares), in which the error is subsumed into one of the variables, and
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orthogonal regression, in which there is considered an error in all of the vari-
ables. We also tested robust algorithms, which relax the strong assumptions
of regression-based methodologies: RANSAC and MAPSAC (see for example
[43]).

The target matching is executed during the online phase (a) every time a visi-
tor is identified so that tracking is initialised in the image of a t-cam given the
position extracted from an i-cam and (b) when the visitor crosses the FOV
of neigboring t-cams. In the source image the location of a visitor is defined
by the image point, which indicates the top of the visitor’s head (located in a
manner similar to the one proposed in [39]). During visitor matching the track-
ing module that processes frames from the destination camera gets a message
that contains the head point location and the visitor ID from the respective
module that processes images from the source camera. Having available the
fundamental matrix between source and destination camera we map the head
point detected in source camera to a line in destination camera. Then the
tracked head point from camera one, which has the minimal distance to this
epipolar line, will be selected for the assignment.

4 On demand subsystem

In film making, there are some pretty basic rules [31] that can be applied to
make an aesthetically pleasing film. The basic challenge in film making is in
selecting and editing video clips according to these rules to produce something
that looks ’right’. The system requires films to be made on-demand, in about
10 minutes, from video footage recorded during a visitor’s day trip to a theme
park or museum.

The media processor is made up of three distinct components. Firstly there
is a media pre-processor step where MPEG-7 annotations of individual video
clips are collated for a specific visitor. Secondly a media processor rule-engine
executes a film template for this collection of MPEG-7 annotations and gener-
ated a SMIL edit decision list that follows the encoded directorial rules. Lastly
a set of media production tools execute the SMIL film script, combines video
clips in the right sequence and with the right duration, and burns a DVD
souvenir.

4.1 Media pre-processor

Our media pre-processor extracts from the database the set of MPEG-7 de-
scriptions for all camera footage where a specific visitor has appeared. The
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Fig. 3. a.Describing a combination of two elements with mutually dependent condi-
tions b. Feature-augmented grammar for video editing

associated semantic annotations are then bundled together and sent to the
media processor as a single MPEG-7 description. This is the shot list the me-
dia processor can select from to make the DVD. Semantic annotation includes
camera ID, visitor ID, visitor bounding box, and simple semantics such as
target position in the image (left, right, upper, or lower view border), enter-
ing/leaving camera FOV, position relative to known object.

4.2 Media processor rule-engine

The media processor service is a web service that takes a MPEG-7 document,
which describes all the shots from a visitor’s day at the theme park/venue
and generates an ’edit decision list’ for it based on some predefined directorial
rules. These rules are encoded in a film template created by a professional
director. The edit decision list is a film script which describes how the visitor’s
video clips should be used to make the film. We have used the SMIL edit
decision list (see, e.g., [44]), which is a list of video clip elements where each
element describes essential information about the video clip such as start time,
duration (i.e. end time is equal to start time plus duration) and video source
(i.e. which camera).

Our rule-based media processor’s approach was inspired by previous work in
computational linguistics [45] and expert systems [46]. The primary distinc-
tions are that the proposed grammar is designed for video clip aggregation as
opposed to word ordering as in text generation. Secondly, the grammar allows
the use of mutually dependent conditions as opposed to conventional indepen-
dent conditions. Two conditions can define tests that reference the properties
of elements that are matched by the other condition (see figure 3a).
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The proposed grammar operates on elements (see figure 3b). The grammar
describes the creation of elements based on other elements. An element is a
collection of properties where a property is a key-value pair. The key is a
textual name and a value can be anything that is comparable, e.g., number,
text and time. For instance, a video clip is an element with properties such as
camera name, start/end time, duration, object type and object name.

Our rule engine is implemented using CLIPS [47] and runs via a GSOAP
web service that the rest of the system can invoke. Our algorithm for rule
application uses an element pool initialised with the observed events, e.g., a
visitor was detected by Cam 1. Every rule is then applied to the pool to create
a new set of elements which are added back to the pool, e.g., the shots, the
short films and finally the complete film.

Set refinement is used to find all possible combinations of elements that satisfy
the rule conditions in three steps. The first step applies context-free tests to
eliminate clearly non-matching elements, e.g. to exclude all clips not about
a specific visitor. The second step analyses the candidates for each condition
to establish the range of property values in each group, thus enabling the
application of context-dependant tests to further reduce the candidate set,
e.g., to select the longest video clip. The final step applies the remaining tests
to each candidate combination to identify complete matches which result in
the creation of new elements that satisfy all the conditions.

4.3 Media production

The final module of the architecture produces automatically the final memen-
tos. This is delivered in the form of a DVD that is given to the registered
visitors of the venue upon their departure. The DVD production is performed
automatically by taking into account the edit decision list as mentioned in the
previous sub-section and interoperably described using the SMIL language.
In this way, the most characteristic phases of the total recorded material are
selected in a cinematographic fashion that permits the creation of a complete
product of high quality not only with respect to the recordings but also to the
synthesis of the new material. The DVD includes apart from video files selected
images in order to produce e-souvenirs like e-photos, e-cards and e-albums.
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5 Experimental evaluation : the bumper car ride

5.1 Scenario and setup

Several experiments have been performed in the premises of ALLOU entertain-
ment park in Athens to prove the validity of our approach. More specifically
the bumper car ride was used, which is undercover but this does not prevent
illumination variations in certain parts of the ride. In such a scenario the RF
sensors are not applicable due to the metal floor that causes reflections.

The scenario in this case has as follows: The visitor registers in the system
before the ride, at some time later the visitor enters the ride, becomes recog-
nised and then becomes tracked until entering one of the bumper cars. The
visitor is associated with the selected bumper car and then the car starts to
be tracked. To make the car tracking easier we have selected unique colors for
each car. The system associates the frames where the associated car appear
with the visitor. The system based on the predefined template selects the best
shots, in which the visitor appears, to assemble the final video clip.

In our experimental setup we forced the visitors to pass from certain entry
points, in which they could be seen by high resolution cameras, so that they
could be recognised. Visitors followed a trajectory along which they could be
seen by a set of cameras with overlapping FOVs, so that correspondences could
be extracted. We also assumed that the visitors pass through at a walking
pace, so that there was enough time to recognise the person and to initiate
the tracking function. The illumination did not change significantly during
the visitor presence, so that consistent tracking was possible. These above
assumptions are realistic in a semi-controlled environment such as the bumper
car ride.

Figure 4 displays one of the camera configurations we have experimented with.
For an i-cam we have three t-cams used for the target tracking. The i-cam
zoomed at the entrance, from which were sure that the visitors would pass.
The resolution was relatively high, so that the required features for face and
body matching could be extracted with higher reliability. On the contrary the
t-cams covered wider areas for content acquisition purposes and high resolution
was not a strict requirement, since the visitors could be tracked even at lower
resolution. We also mounted 2 wireless cameras on each bumper car to take
onboard shots.
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Fig. 4. The camera configuration

Distance Method False positive (%) False negative (%)

Facial Features 29.91 32.42

Body Color Features 22.22 25.64

Facial and Body Features 17.09 20.51

(no weighting approach)

Facial and Body Features 12.82 14.53

(weighted approach)

Non-Linear Fusion 3.42 4.27

(Neural Network Model)
Table 1
Human identification using different features and fusion methods

5.2 Subsystems

5.2.1 Real-time

Table 1 presents the peformance of the human identification process contact-
ing during the registration phase. The results have been obtained using differ-
ent feature fusion methods. In particular, initially, we use only facial features
for the identification. Then, we measured the human similarity by exploit-
ing only the color distribution of human body. Then, we investigated the ef-
fect of different feature fusion methods on human identification performance.
Three different data fusion approaches were examined. The first was a simple
concatenation of the facial / color body features. The second exploited the
optimal weighted strategy described in section 3.1.2. In this case, facial and
color body features were appropriately scaled to maximize human identifica-
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tion performance. The third approach non-linearly fused the features using
a feedforward neural network architecture. As was observed, the best perfor-
mance was encountered for the latter non-linear case. This was expected since
the importance of facial and color body features on human identification do
not follow a simple linear relation. The second best method was the optimal
weighted linear strategy.

The identification results refer to all the frames acquired in a time period of
about 3-4 seconds, which was the time required for a walking person to pass
from the field of view of the i-cam. We were able to process frames for the
recognition task at a rate of approximately 5 per second. Clearly there was
significant improvement in the recognition rates if the fused information from
face recognition and body region was used. In the experiments 14 people were
registered and 23 were unregistered. The error factors in face recognition had
to do with face detection (gave 1.5% false positive and 3.3% false negative
by checking also for skin color in the returned regions), facial expressions,
which altered the facial characteristics, and the relatively low resolution of
the acquired video. As for the body recognition the illumination changes and
the shadows were adversely affecting the results.

To achieve color constancy we have used the Grey-World assumption due to
its real time capabilities. More specifically we have used parts of the image,
which we knew that would always be unoccluded and then we had adapted the
image accordingly. The camera used for registration and the i-cam have been
calibrated to color using the Scarse tool [48] and a MacBeth color checker. For
body modeling and recognition a mixture of Gaussians was used with three
components in the RGB color space. The distance metric given in 5.2 has
given the highest discrimination and was therefore used.

The unit test of the tracking module has been done using approximately 3600
frames annotated by a human operator. The measures that quantify the effec-
tiveness of the algorithm for typical sequences that we tested are the ’Tracker
Detection Rate’ (TDR) and the ’False Alarm Rate’ (FAR) defined as in [49]:

(TDR) =
TP

TP + FN
, (FAR) =

FP

FP + TP
(36)

where TP , FN and FP denote the number of true positive, false negative and
false positive pixels using hand-annotated ground truth bounding boxes for
simplicity. We compared our method with the classical particle filter using the
same models and features combined in a single state vector to show that by
using the same features (salient points and edges) our hierarchical approach
provides better results in terms of tracking accuracy. The experiments have
been performed with both trackers sharing the same number of particles to
equalize the computational resources. The number of particles were selected to
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allow for real-time tracking (≈25fps) while providing acceptable performance.
Table 2 indicates the effectiveness of the tracking method for humans. The
average values are positive considering the random localization of the bounding
rectangle, which would give average TDR≤0.05 and average FAR≥0.95 for our
t-cam sequences (ideally TDR=1, FAR=0). Although the bounding rectangle
is not perfectly accurate, as proved by experiments given in section 5.3 the
goal of extracting the target trajectory was achieved. Most of the errors are
due to illumination variations, which could alter the perceived colors. We have
used sequences captured from our system as well as standard PETS sequences
(railway station) and the results (without recovery) are presented in table 2.
An example from the PETS sequences as well as the aforementioned metrics
are depicted in figures 5, 6 ,7.

The task of tracking bumper cars was much easier due to the fact that these
are non-deformable objects, with different characteristic colors for each car,
which are known in advance. After a person was entering a bumper car the car
was associated with the visitor. Then we were searching for the characteristic
color in the non static regions in each frame for each camera and we estab-
lished spatial coherency in consecutive frames to minimise false positives. For
approximately 80000 we had 0.05% false positives and 0.12% false negatives.

The tracking recovery tool has been tested in 30 occlusion cases (partial or
total) where the tracker was losing the target and helped the tracker to re-
cover in 25 of them, while the failures stemmed from targets having similar
appearance. The modelling was done every 50 frames. The speed of the al-
gorithm depends on the maximum number of iterations and the associated
convergence threshold. Both were defined so that the algorithm would run at
a rate of approximately 10 fps, given the size of the tracked objects, which gave
reasonable performance and results not far from optimal. The output masks
were also combined with masks from background subtraction for best results.
A characteristic case is presented in figure (8), where the tracking with and
without recovery is demonstrated. In figure 9 the respective mean likelihood
for all particles is presented, which activates recovery if it falls below 0.4. The
mean and not the maximum is used to minimize noise. The model parame-
ters were dynamically updated each time a reliable mask was provided by the
tracker for each object. The likelihood threshold depends on the specific view
and the tracked objects. Instead, in case that tracking performance deterio-
rates, the object identification assists the tracker to recover objects’ contours.
To verify the good performance of the proposed adaptive identification pro-
cess we compared the objects’ masks for each object overall all frames with
ground truth data, i.e., references masks of these objects. The average error
of the region labeled by the classifier than the ground truth data was about
20%. This error includes both (a) misclassified image regions of that object to
others and (b) misclassified regions of the other objects to the one considered.
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For all experiments, we considered blocks of 8x8 pixels as image regions. Thus,
object labeling was performed on an 8x8 image block. For each block, the DC
and the 7 AC coefficients of the DCT transform were used. These 8 feature
elements were extracted for each color component of the image in the Hue
Saturation Value (HSV) color space. Thus, each image block was character-
ized by 24 features elements. These feature elements constituted the attribute
vector ai(n) which is involved in equation (27).

Fig. 5. Tracking Results - PETS Sequence: White PF, Black PM, 100 particles,
frames 1,15,30,45,60,75.

Fig. 6. Tracking Results Chart(TDR) - PETS Sequence.

The evaluation for the multicamera tracking was conducted by firstly estimat-
ing the epipolar geometry using a set of training points using a calibration
pattern (visible from both cameras) and further evaluating it by using a set
of corresponding test points. For each one of the source camera points of our
test set we computed the corresponding epipolar line to the destination camera
view, using the estimated epipolar geometry and we calculated the distance
of its corresponding point from that line. The estimation of epipolar geome-
try using calibrated cameras was conducted estimating the essential matrix
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Fig. 7. Tracking Results Chart(FAR) - PETS Sequence.

Fig. 8. Typical recovery procedure a. tracker of occluded target without recovery
b. associated masks after training for both moving targets c. tracker of occluded
target with recovery procedure

of the considered cameras [50]. The results are displayed in Table 3. As we
can notice, RANSAC and MAPSAC algorithms yielded the best results, while
epipolar geometry estimation using calibrated cameras yielded the poorest
one, mainly due to the difficulty of the camera calibration task, which intro-
duced a great deal of correlated error in the calculations. The precision of the
mapping has been measured to be better than ten pixels. For the calibration,
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Fig. 9. The mean likelihood of all particles for the occlusion case in fig 8 with and
without recovery activation

Method PF PM

Seq Frames TDR FAR TDR FAR N

PETS
station

1300 0.42 0.79 0.57 0.58 100

bumper
car

2300 0.32 0.87 0.65 0.21 100

Table 2
Results using selected parts of the PETS-station sequences and sequences from our
bumper car human tracking scenario. PF denotes the classical particle filter while
PM our method (without recovery). TDR, FAR refer to average performance for the
sequences. N is the number of particles which is proportional to the computational
cost and is common for both PM and PF.

Method Mean error (per cent)

Calibrated cameras 28.30

Ordinary least squares 11.37

Orthogonal regression 9.81

RANSAC 1.02

MAPSAC 1.01
Table 3
Evaluation of epipolar geometry estimation methods

a chess board in A0 format was used to extract the needed points. A result of
this is optimised for a few meters close to the calibration map. There is also
the limitation that the common area between two handover cameras should
be enough to handle the object speeds and direction. A typical result of the
multicamera tracking is displayed in figure 10.
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Fig. 10. Recognition and multicamera tracking. Initially the face is detected and
the visitor recognised (i-cam). A hand-off between the i-cam and the t-cam1 camera
takes place. The handoff between the t-cam1 and the t-cam2 follows. The visitor is
associated to the bumper car in which he enters.

5.2.2 On-demand

The director’s goal is to include the visitors in the video and to capture the at-
titude in the attraction, i.e., excitement in the case of the bumper car scenario,
so that visitors can relive their experience. How this will be achieved, may be
sometimes subjective. In our scenario a number of rules were run to assert a
number of ’shot’ facts that contain valid shots a film can choose from. These
shots contained the visitor and some would overlap temporally (i.e. a choice
must be made between two or more cameras). Metadata such as ’EnterView’,
’CentreView’, ’LeaveView’ were present as attributes to a ’clip’ fact that could
be used to help decide which shots to use. This metadata was extracted from
the MPEG-7 semantic annotations.

A film is a chain of selected shots in temporal order. Rules were created to
turn ’clips’ into ’shots’ in a way compatible with the film’s ethos. These rules
were:

(1) The promotional material and stock content are added at the beginning
of the video.

(2) At the first step only the shots associated with the specific visitor or
associated bumper car are selected.

(3) Shots with duration less than one second are excluded.
(4) When the target leaves the FOV of a camera to enter of FOV of another

one change view in the middle of the period that both cameras view the
target.

(5) If there are time gaps, i.e., the visitor does not appear in a camera for a
time period, e.g., due to occlusion or if entering a region not covered by
the static cameras then we acquire footage from the onboard cameras.
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Our director has spent approximately two man-days to find the appropriate
camera positions and define the rules that produce the desired artistic result.

5.3 Integrated test

Each of the above production rules can be associated to certain types of er-
roneous decisions, which result in deviations from the optimal content. As for
rule 1 it is the failure to automatically include promotional content in the
produced video (practically never happens). Failures in 2 regard the selection
of wrong frames (i.e., frames in which the target is not well visible or totally
absent) and are calculated as the percentage of the total number of frames.
Failures in 3 are a consequence of wrong labelling and they regard the false
insertion (false positive) or omission (false negative) of video content due to
incorrectly perceived duration (exceeding or not exceeding the cut-off duration
threshold). They are calculated as percentage of the total number of frames.
Failure in 4 regards the unnecessary hand off (false positive) and the failure
to perform hand off (false negative). It is calculated as the percentage of the
total number of hand offs. Failures in 5 regard the unnecessary insertions of
shots from the onboard camera when the system believes that the target is
not visible (false positives) and the omissions to insert such a shot (false neg-
atives) when the system believes that the target is visible. It is calculated as
percentage of the total number of frames.

To evaluate the system performance we have compared the system output with
the output provided by a human editor who has to follow the same rules. The
results are given in table 4. The discrepancies between the produced videos are
due to processing errors in the system. Footage consisting of approximately
90000 frames from six cameras have been processed and evaluated to produce
these results.

Generally the videos are aesthetically pleasing for the visitors (a) if they are
included in them and (b) if the atmosphere in the attraction is reproduced.
The (a) has been quantified by rule 2. Missing totally the visitors for some
time duration does not create blank intervals in the final video, because clips
from onboard (or overview) cameras are used so that the related shots can
be relevant even in cases of such errors. As for (b), 19 out of 26 visitors who
were surveyed thought that the atmosphere was successfully captured in the
produced videos.

The produced final product had a duration of 3 minutes (as long as a ride)
and about ten different videos were produced using the same scenario.
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Rule Errors (per cent)

Rule 1 (failure to insert intro) 0

Rule 2 (wrong frame label) 10.69

Rule 3 (wrong inclusion/exclusion) 1.41/1.30

Rule 4 (wrong handoff/failure to perform handoff) 16.15/19.85

Rule 5 (omit insert/false insert) 2.68/3.02
Table 4
Overall evaluation of application scenario

6 Discussion

Given the difficulty of the task the experimental results are promising. The
target is not always successfully tracked, however the acquired content can be
always relevant, provided that the initial identification has been done correctly.
This is achieved by defining appropriate rules. For example when the target
visitor is lost (in the bumper car scenario) then the system uses the clips
captured from onboard cameras, or from cameras viewing the whole ride thus
ensuring that the visitor is viewed.

The requirements for operating a personalised video acquisition system in
venues or theme parks are very demanding. The human identification has to
be executed in a very reliable manner, so that the whole processing chain can
be correctly initiated. It is obvious that the face recognition technology as it
is today does not fully cover this requirement despite the significant progress
made recently. We have achieved higher success rates by (a) taking many
images from various viewpoints during registration (b) allowing recognition
through a sequence of frames and not a single frame (c) using information from
body colors (d) controlling illumination as much as possible and compensating
for brightness changes. The more progress is made in the face recognition field,
the more applicable our approach will be.

The proposed template-based automated content creation can be applied to
several domains, provided that the digital content can be automatically asso-
ciated with semantics, e.g., by using techniques like the one proposed in [51].
Provided that the rules are appropriate and that the recognition/retrieval
of content is acceptable such a method is expected to provide aesthetically
pleasing results.

We have seen that with appropriate tuning of the number of particles for
tracking and the number of iterations for modeling and recovery it is possi-
ble to achieve real time performance having acceptable results. At the rather
small scale described in this work the production stage (DVD burning) is
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the main bottleneck. The scalability of the proposed recognition approach in
large venues with many more visitors is still to be proven, however the use
of cameras in combination with other sensors, e.g., RF, would help in de-
creasing significantly the search space. The difference of that case with the
approach proposed in [2] is that the RF sensors will be used only for identifi-
cation and not for localisation and camera triggering through tracking, which
can be problematic near metal structures and for trajectories that are not
predetermined.

A serious concern with the proposed approach is the illumination variations,
which may affect identification and tracking performance. Thus the investiga-
tion of the light conditions between the registration area and the identification
area, as well as in the tracking area is one of the key aspects. In our exper-
iments the lighting conditions themselves were improved by providing stan-
dalone lighting that was consistent and adequate. We experienced difficulties
with the sunlight levels changing during the day and invalidating the camera
calibration settings. To resolve this we have used automatic camera calibra-
tion and color constancy techniques. The bumper car ride itself, once started,
dimmed all lights and activated a number of flashing lights. These flashing
lights were problematic but more consistent independent lighting helped.

The real-time subsystem was integrated with a streaming architecture that
was evaluated and was found to be functional for PCs and mobile phones
over a 3rd generation mobile network. There was a delay of several seconds
(normally less than ten) between the actual time and the time that the e-
visitors perceived. This was due to the inherent buffering mechanisms that the
streaming servers employ to compensate for network problems. Nevertheless
some streaming services can be based on the described scenario.

Setting up a demo area was the most difficult part of the integration. First
thing to do was to define the area of the demo and mark all possible key areas
in the demo - identification area, handover tracking sequence and registra-
tion. Then the cameras had to be configured to view the key points in the
ride. The illumination needed to be optimised to minimise variations due to
external light. Tracking handover (or human and car objects) required camera
calibration to understand the same x-y coordinates of the object. Finally the
appropriate rules needed to be defined so that the final DVD will be aesthet-
ically pleasing.

7 Conclusion

A new system for identifying tracking using vision automatically generating
personalised video content using non-intrusive technology has been presented.
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Furthermore, we found that new services like online streaming for venue visi-
tors are feasible for the proposed scenario. The system integrates some of the
latest advancements and has been applied in a real environment of an enter-
tainment park. The results have shown that the approach is feasible if the
illumination is controlled and the environment carefully modified to match
the capabilities of the identification and tracking algorithms.

In the framework of this application we have contributed a novel methodol-
ogy for efficient tracking which outperforms the standard particle filter fusion
scheme, a new fusion scheme for human identification which is better than
face recognition and a feature-augmented grammar based system for auto-
mated production from annotated content.

The main difficulties of the overall approach have to do with identification and
tracking under varying illumination, but as the related algorithms progress and
the hardware costs decrease, our system, which has been deployed for research
purposes, will come closer to commercial exploitation.
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