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Robust Visual 
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I
n this article, we propose a novel framework for 
robust visual behavior understanding, capable 
of achieving high recognition rates in demand-
ing real-life environments and in almost real 
time. Our approach is based on the utilization 

of holistic visual behavior understanding methods, 
which perform modeling directly at the pixel level. 
This way, we eliminate the world representation 
layer that can be a significant source of errors for the 
modeling algorithms. Our proposed system is based 
on the utilization of information from multiple camer-
as, aiming to alleviate the effects of occlusions and other 
similar artifacts, which are rather common in real-life 
installations. To effectively exploit the acquired information 
for the purpose of real-time activity recognition, appropriate 
methodologies for modeling of sequential data stemming 
from multiple sources are examined. Moreover, we explore the 
efficacy of the additional application of semisupervised learn-
ing methodologies, in an effort to reduce the cost of model 
training in a completely supervised fashion. The performance 
of the examined approaches is thoroughly evaluated under 
real-life visual behavior understanding scenarios, and the 
obtained results are compared and discussed.

INTRODUCTION
Event understanding in video sequences is a research field that has 
rapidly gained momentum over the last few years. This is mainly 
due to its fundamental applications in automated video indexing, 
virtual reality, human-computer interaction, assisted living, and 
smart monitoring. Recently, we have seen an increasing need for 
assisting and extending the capabilities of human operators in 
remotely monitored large and complex spaces such as public 
areas, airports, railway stations, parking lots, and industrial plants.

Several systems have been presented in the past aiming to 
cover these needs (see for example the survey [1]); however, the 
dire fate of most of them has been to remain prototypes deployed 
in laboratories. To develop visual behavior classification systems 
that can work in real environments, much more research effort 
is required towards the resolution of the following problems: 

How can we extract reliable and representative features of  ■

tractable dimensionality that will by-pass the error-prone 
detectors and trackers? 

How can we model highly diverse and complex behaviors  ■

that will be more tolerant to noise and outliers? 
How can we exploit camera networks that provide a wider  ■

coverage of the scene and redundant data that help solve 
occlusions and improve accuracy? 

How can we efficiently build reliable behavior models with- ■

out having to annotate large amounts of data?
In this article, we try to handle all these issues in a unified 

framework, aiming to tackle all the significant pitfalls that 

[A framework based on holistic 
representations and multicamera 
information fusion]
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plague existing systems, which 
despite their consideration as 
“state of the art,” are usually con-
fronted with a big failure when 
deployed anywhere else than 
highly controllable laboratory 
environments. We introduce a novel system for robust visual 
behavior recognition, capable of achieving in real-time decent 
recognition rates in real-life installations, based on a holistic 
representation of the raw input data, and hidden Markov model 
(HMM)-based statistical pattern recognition methodologies.

More specifically, raw input data are modeled using holistic 
visual features extracted at the image level, which are further 
used to associate events and behaviors with temporal patterns. 
These features bypass the commonly used intermediate repre-
sentation of the physical world (e.g., objects that have to be 
tracked) and thus avoid dealing with the very challenging pro-
cess of tracking. In the sequel, the extracted information is 
modeled by means of a statistical methodology appropriate for 
modeling sequential data. We examine various alternatives, and 
we show that the HMM is the most effective solution for this 
purpose, as it allows for 

a better handling of outliers (which are rather typical in  ■

our setting due to occlusions, illumination changes etc), by 
being endowed with a student-t observation model 

the effective utilization of information stemming from  ■

multicamera configurations, by application of well-studied 
HMM-based information fusion schemes; this way, we can 
outbalance the modeling limitations of holistic features 
regarding the case where occlusions are present, thus allow-
ing for the achievement of high recognition rates in the con-
sidered challenging environments.
Furthermore, we show that the examined behavior models 

can be further evolved by additional application of semisuper-
vised learning methods; this is important for reducing the man-
ual annotation effort required for totally supervised model 
training, hence making installation of our system more cost-ef-
fective in real-life settings. 

We deploy our system in the premises of a European auto-
mobile manufacturer plant under real conditions, and we pro-
vide comparative results of modeling several assembly tasks that 
take place in this challenging real-life environment. 

A concise flow diagram of the proposed visual behavior 
understanding system is presented in Figure 1. The structure of 
our presentation follows this diagram. The first functional proce-
dure of our system is environment modeling, i.e., the creation of 
a model of what belongs to the scene, as opposed to the actors or 
moving objects entering and leaving the scene that are identified 
in the next step of motion segmentation. This problem has been 
treated in the literature, e.g., see [2], where the background pix-
els are modeled by Gaussian mixtures. The moving objects are 
then identified by calculating their distance from the model. 

The next processing step is the extraction of features for 
the effective representation of the raw input data (followed by 
a dimensionality reduction step for the obtained feature vec-

tors); we shall elaborate on 
this procedure in the sec-
tion “Raw Data Repre-
sentation: Why Choose 
Holistic Features Directly at 
the Pixel Level?” The result-

ing camera-specific information streams are input to classifi-
ers capable of modeling and recognizing time series, as we 
shall describe in the section “Why Use HMMs to Model the 
Extracted Holistic Representation of the Captured Video 
Sequences?” The recognition results of the deployed system on 
development data sets may be used to further improve the be-
havior models in a semisupervised fashion. Moreover, fusion of 
multiple information streams is possible when the target is 
viewed by multiple cameras. 

In the section “Experimental Evaluation,” we provide a thor-
ough experimental evaluation of the proposed system, consider-
ing real-life visual behavior recognition scenarios in the context 
of the assembly lines of a European automobile manufacturer. We 
compare the performance of the proposed novel approach with 
popular rival methodologies based on state-of-the-art tracking 
and person detection algorithms. Additionally, we justify the spe-
cific selection of the separate algorithms that comprise the build-
ing blocks of our system, by providing empirical evidence 
regarding the performance we obtain by replacing the selected 
algorithms with alternative approaches available in the literature.  
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[FIG1] Architecture of the proposed framework. The error-prone 
processes of object classification and tracking are bypassed by 
using holistic scene representation.
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RAW DATA REPRESENTATION: WHY CHOOSE 
HOLISTIC FEATURES DIRECTLY AT THE PIXEL LEVEL?
One of the key challenges real-time action recognition systems 
are confronted with concerns selection of appropriate features 
for representing the observed raw data. The ideal features 
should describe different actions accurately, with high discrimi-
nation capability, and should be efficiently calculated. Ideally, 
these features should also provide a hierarchical representation 
scheme (coarse to fine) so that a desirable, application-wise 
tradeoff between representation capabilities and computational 
complexity can be reached. In the following, some popular fea-
tures and their applicability to behavior recognition tasks are 
discussed, as well as our proposed representation. 

The employment of features directly extracted from the 
video frames has the significant advantage of obviating the 
need of detecting and tracking the salient scene objects, a pro-
cess that is notoriously difficult in cases of occlusions, target 
deformations, and illumination changes. Thus, by using such 
an approach, the intermediate levels of semantic complexity, as 
met in typical bottom-up systems, are completely bypassed (see 
Figure 1). For this purpose, either local or holistic features (or 
both [3]) may be used. 

An advantage of local descriptors is that their computation 
does not require static cameras (or a registration process to 
make the captured video frames comparable); however, real-life 
installations usually employ static cameras, hence rendering 
this advantage of local descriptors rather indifferent in the 
examined context. On the other hand, a major disadvantage of 
local descriptors is the significant computational burden 
required for their calculation. Another drawback of local 
descriptors is that, despite their suitability for extracting the 
motion patterns of tracked objects within certain regions (e.g., 
[4] and [5]), they are not suitable for capturing the shape of the 
moving objects. 

Holistic features remedy these drawbacks of local features, 
while also requiring a much less tedious computational proce-
dure for their extraction. Motion history images and motion 
energy images are among the first holistic representation 

methods for behavior recognition [6]. A very positive attribute 
of such representations is that they can easily capture the his-
tory of a task that is being executed. In [7], it was shown that 
pixel change history (PCH) images are able to capture relevant 
duration information with better discrimination performance. 

The PCH of a pixel is defined as

P%,t 1x, y, t 2 5 fminaP%,t 1x, y, t2 1 2 1 255
% , 255b

if D 1x, y, t 2 5 1

 
maxaP%,t 1x, y, t2 1 2 2 255

t , 0b
otherwise

 (1)

where P%, t 1x, y, t 2  is the PCH for a pixel at 1x, y 2 , D 1x, y, t 2  is 
the binary image indicating the foreground region, % is an accu-
mulation factor, and t is a decay factor. By setting appropriate 
values to % and t we are able to capture pixel-level changes over 
time (see Figure 2). 

In [7], the moving objects were identified by merely using 
differencing. A simplistic feature vector including the centroid 
and the major/minor axes of the overall resulting image was 
used; however, such a representation suffers from averaging 
effects in the general case where multiple moving agents are 
present. Thus, a shape descriptor would be most appropriate to 
represent the resulting PCH images. 

Obviously, when dealing with real-life tasks, methods for 
extracting the shapes of moving agents, as well as good descrip-
tors for those shapes are needed. Depending on the application 
requirements, foreground objects (instead of moving objects) 
may be considered important; foreground objects can be extract-
ed in real time by standard foreground segmentation methods 
[2]. Zernike, pseudo-Zernike, and Hu moments are among the 
most popular choices as shape descriptors (see, e.g., [8]). 
Zernike and pseudo-Zernike moments are very attractive 
because of their noise resiliency, their reduced information 
redundancy, and their reconstruction capability. 

Based on these observations, raw data representation in our 
system is conducted by using Zernike moments to extract the 
valuable information from calculated PCH images; this way, we 
yield a much more robust representation compared to the sim-
plistic approach of [7]. The complex Zernike moments of order 
p are defined on a PCH image f  as 

 Apq5
p1 1
p 3

1

0
3
p

2p

Rpq 1r2e2jquf 1r, u 2rdrdu, (2)

where r5"x21 y2, and u 5 tan21 1y/x 2  and 2 1 , x, y , 1 
(x, y are the image coordinates, with respect to the center, 
around which the integration is calculated) and 
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[FIG2] (a) and (b) show two keyframes and (c)–(e) show the 
respective background subtraction images and extracted 
PCH image.
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where p2 q5 even and 0 # q # p. Moments of low order hold 
the coarse information while the ones of higher order hold the fine 
details. However, the more detailed the region representation is, the 
more processing power will be demanded, and thus a tradeoff has to 
be reached considering the specific application requirements. 

As one can notice, the resulting representation of the raw cap-
tured data entails a high dimensionality of the obtained feature 
vectors. This could probably give rise to model training issues, 
affecting both their efficiency and classification performance 
(curse of dimensionality). Therefore, application of an additional 
dimensionality reduction step is required. For this purpose, com-
mon dimensionality reduction methods, such as principal compo-
nent analysis (PCA), or linear discriminant analysis [9], may be 
used. Note, however, that the adoption of a representation based 
on Zernike moments, allows for the data dimensionality to be 
reduced merely by not considering moments of higher order.

WHY USE HMMS TO MODEL THE EXTRACTED HOLISTIC 
REPRESENTATION OF THE CAPTURED VIDEO SEQUENCES?
One of the key functionalities of any machine learning model (classi-
fier) suitable for application in visual behavior understanding is the 
ability to extract the “signature” of a behavior from the captured visu-
al input. The key requirements when designing such a classifier are 

to support task execution in various time scales, since a task 1) 
or parts of it may have variable duration 

to support stochastic processes, because of the task intra-2) 
class variability and noise 

appropriate handling of outliers 3) 
flexible and effective exploitation of the additional informa-4) 

tion from multiple data streams.
A popular approach for sequential data modeling that fulfills 

the above requirements is the HMM (see, e.g., [10]). An HMM 
entails a Markov chain comprising a number of, say, N states, with 
each state being coupled with an observation emission distribution. 
An HMM defines a set of initial probabilities 5pk6k51

N  for each state, 
and a matrix A of transition probabilities between the states; each 
state is associated with a number of (emitted) observations o (input 
vectors). Gaussian mixture models are typically used for modeling 
the observation emission densities of the HMM hidden states. 

Typically, HMMs are trained under the maximum-likelihood 
framework, by means of the expectation-maximization (EM) algo-
rithm [10]. The HMM model size, i.e., the number of constituent 
states and mixture components, can affect model performance and 
efficiency; for this reason, several criteria have been proposed for 
the purpose of data-driven HMM model selection (e.g., [11] and 
[12]). However, for systems that are expected to operate in nearly 
real time, small models are generally preferable, due to their low 
number of parameters, hence easier learning, and considerably 
less computational burden for sequential data classification. 

Outliers are expected to appear in data sets obtained from realis-
tic monitoring applications due to illumination changes, unexpect-
ed occlusions, and unexpected task variations and may seriously 
corrupt model training results. The vast popularity of the HMM 
framework is partly attributed to the fact that it is flexible enough 
to allow for the replacement of the commonplace Gaussian mixture 

observation models with other ones that are more tolerant to outli-
ers. As we have recently demonstrated, the adoption of the multi-
variate student-t distribution as the observation model of HMMs 
allows for the efficient handling of outliers in the context of the 
HMM framework without compromising overall efficiency [13].

The probability density function (pdf) of a p-dimensional stu-
dent-t distribution with mean vector m, positive definite inner 
product matrix S, and n degrees of freedom is given by

 t 1xt; m, S, n 2 5
Gan 1 p

2
b |S|21/2 1pn22p/2

G 1n/2 2 511 d 1xt, m; S 2 /n61n1p2/2, (4)

where G 1 # 2  denotes the Gamma function and d the Mahalanobis 
distance. As we observe in Figure 3, the student-t distribution has 
heavier tails compared to the Gaussian, which allows for higher 
tolerance to outliers. The Gaussian distribution is actually a special 
case of the student-t for n S `. 

Model parameters, including n, can be automatically estimated 
by means of a model training algorithm, e.g., under the EM algo-
rithm framework as described in [13].

SEMISUPERVISED LEARNING
Semisupervised learning is a term used to characterize machine 
learning algorithms designed to exploit both labeled and unlabeled 
data. The basic notion behind semisupervised learning of probabi-
listic classifiers is that using a limited sample of labeled data along 
with a big pool of unlabeled data would offer a good tradeoff 
between a) using only a limited sample of training data, an 
approach which is well known to incur a significant overfitting 
proneness to the trained probabilistic models, thus severely under-
mining the obtained pattern recognition performance; and b) 
acquiring large labeled training data sets, which could be extreme-
ly resource consuming, or even impossible in real-life applications. 

The goal of modeling behaviors and events from holistic fea-
tures can be severely undermined in real-life applications by the 
fact that large amounts of manually annotated data are usually 
required for dependable model training. Furthermore, often 
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[FIG3] The student-t distribution for various n values. For n S ` 
we yield the Gaussian distribution.
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machine learning systems need to be capable of adapting them-
selves, which is not possible in a strictly supervised learning 
fashion. Consequently, the application of semisupervised learn-
ing may be of significant benefit for holistic representations-
based behavior recognition methods. Indeed, semisupervised 
learning arises as a promising solution for the reduction of the 
deployment costs of such systems in real-life installations, asso-
ciated with the reduction of model training costs. For this rea-
son, we incorporate semisupervised refinement of the employed 
HMM-based classifiers as a functional aspect of our system. 

In our system, we employ one of the oldest, simplest, and 
most successful semisupervised learning approaches for genera-
tive probabilistic models, including HMMs, that is self-training. 
Indeed, self-training is a wrapper method that applies to any 
existing (complex) classifiers and is often used in real tasks like 
natural language processing. The basic notion behind the self-
training method consists in the simple assumption that one’s 
own high confidence predictions are typically correct. On the 
basis of this assumption, self-training a set of HMM classifiers 
involves the following basic steps: 

Postulate one HMM for each class. 1) 
Train the models using the available training data points of 2) 

each class. 
Label the available unlabeled data points by using the 3) 

trained HMMs to classify them. 
Incorporate the unlabeled data points into the training 4) 

data sets (using their estimated labels). 
Repeat Steps 2–4 until the estimated labels of the unla-5) 

beled data points stop changing between repetitions.
Typical variations of self-training usually reflect different 

decisions regarding how to incorporate the unlabeled data into 
the training set. Common alternatives include adding a few 
most confident unlabeled data points to the training sets, add-
ing all unlabeled data points to the training sets, and adding all 
unlabeled data points to the training sets, but weighing each 
one of them by a confidence metric when used in model estima-
tion (e.g., using a homotopy method [14]). 

We shall empirically demonstrate the utility and the benefits 
our system gains from the adoption of the semisupervised learn-
ing framework in the experimental section of this article. 

EFFECTIVE EXPLOITATION OF INFORMATION 
CAPTURED FROM MULTICAMERA NETWORKS
One of the weaknesses of holistic image-based methods for 
behavior recognition is their dependence on the viewpoint, and 
thus their vulnerability to occlusions. This can be alleviated by 
deploying multiple cameras so that the occlusions are mini-
mized by appropriately placing the cameras. Each camera input 
can be used to generate a stream of observations. An appropriate 
information fusion technique is used after the generation of the 
observation stream. The ultimate goal of multicamera fusion is 
to achieve behavior recognition results better than the results 
that we could attain by using the information obtained by the 
individual data streams (stemming from different cameras) 
independently of each other. In the following, we shall survey 

the most popular fusion methods within the HMM framework, 
examine their applicability with respect to camera synchronicity 
and configuration, and consider possible enhancements to make 
them more tolerant to outliers. The observations from this anal-
ysis will form the criterion for our selection of the most suitable 
HMM-based information fusion scheme to be used in the con-
text of our system. 

Existing approaches can be grouped into feature (or early) 
fusion and late fusion approaches. Feature fusion is the simplest 
approach; it assumes that the observation streams (sequences of 
feature vectors as defined in the section “Raw Data 
Representation: Why Choose Holistic Features Directly at the 
Pixel Level?”) are synchronous. This synchronicity is a valid 
assumption for cameras that have overlapping fields of view and 
support synchronization. The related architecture feature-level 
fusion (FHMM) is displayed in Figure 4(b). Let us denote as st 
the FHMM state emitting the tth observation. Let us consider 
data deriving from a number of C observation streams, and 
denote as 5o1t, c, oCt6 the observations at time t deriving from 
the available streams. Then, the full observation vector, ot, con-
sidered by the feature fusion approach at time t, is a simple con-
catenation of the available individual observations 

 ot5 1o rct 2 rc51cC. (5)

This way, the observation emission probability of the state st5 i 
of the fused model, when modeled as a k-component mixture 
model, yields 

 P 1ot|st5 i 2 5 a
K

k51
wik P 1ot|uik 2 , (6)

where wik denotes the weights of the mixture components, 
and uik are the parameters of the kth component density of 
the ith model state (e.g., mean and covariance matrix of a 
Gaussian pdf). 

The major limitations of the feature fusion approach lie in 
the fact that the simple concatenation of observations from dif-
ferent streams leads to high dimensionality and often fails to 
capture significant statistical dependencies between the differ-
ent sources of information. Furthermore, it relies heavily on the 
assumption of a perfect synchronicity of the different data 
sources (synchronized cameras), which is an assumption that is 
often difficult to be satisfied. 

In the state-synchronous multistream HMM (SHMM) [see 
Figure 4(c)] the streams are also assumed to be synchronized. 
Each stream though is modeled using an individual HMM. The 
postulated stream-wise HMMs share the same state dynamics 
(initial and transition probabilities of their states). Then, the 
likelihood of one multistream observation (say, at time t) is 
computed as the product of the observation likelihood of each 
constituent stream c raised to an appropriate positive stream 
weight rc [15] 

 P 1ot|st5 i 2 5q
C

c51
ca

K

k51
wikc P 1oct|uikc 2d

rc

, (7)
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where wikc and uikc are the parameters of the cth-stream HMM. 
The weight rc is associated with the reliability of the informa-
tion carried by the cth stream. For example, a camera that 
does not capture the moving target very well due to occlusions 
should be weighted less. This way, the strong dependency of 
the feature fusion approach on highly reliable synchronized 
data streams is relaxed. 

Despite its obvious advantages over feature fusion, the 
SHMM still relies on the assumption of synchronized data 

streams. Nevertheless, this assumption can be very restrictive in 
the context of visual behavior understanding. An alternative that 
assumes that the observation streams are independent of each 
other is the parallel HMM (PHMM) [16] [see Figure 4(d)]. This 
HMM-type model can be applied to cameras (or other sensors) 
that may not be synchronized and may operate at different 
acquisition rates. A PHMM does also comprise a number of 
component stream-wise HMMs, independently trained of one 
another. Similar to the synchronous case, each stream c may 
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[FIG4] (a)–(f) Various fusion schemes using the HMM framework for two streams. The s, o stand for the states and the observations, 
respectively. The first index marks the stream and the second the time.
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have its own weight rc depending on the reliability of the source. 
As a consequence of this construction, the PHMM suffers from 
the major disadvantage of tending to neglect any dependencies 
on the state level between the observation streams. Several 
architectures that ameliorate this issue have been presented in 
the past; two popular examples are the product HMM [17], and 
the coupled HMM (CHMM) [18]. 

The product HMM is used to model streams that exhibit 
behavior that lies between full synchronization (SHMM) and 
independent streams (PHMMs). It can be used for multicamera 
configurations for which the degree of asynchrony can not be 
easily inferred. Training of product HMMs is conducted by 
means of a special variant of the EM algorithm, suitable for this 
model [17]. It has to be noted though that the computational 
requirements of this model are considerably high. 

The CHMM is designed for data comprising only two 
streams, thus it is not a choice for scalable systems. It assumes 
dependency of the “current” emitting state of the observations 
pertaining to each one of the streams on the “previous” state of 
the other observations stream [see Figure 4(e)]. This can be 
applied to nonoverlapping camera configurations, where, for 
example, the target enters the view field of one camera after 
leaving the view field of another one. However, this very proper-
ty is the ultimate limitation of this method, which makes it 
inappropriate for the problem we aim to tackle. 

The multistream-fused HMM (MFHMM) is another meth-
od recently proposed for multistream data modeling [19] [see 
Figure 4(f)]. Unlike the product HMM, the connections 
between the component stream-wise HMMs of this model are 
chosen based on a probabilistic fusion model, which is optimal 
according to the maximum entropy principle and a maximum 
mutual information criterion for selecting dimension-reduc-
tion transforms [19]. Specifically, if we consider a set of multi-
stream observations O5 5ot6t51

T , with ot5 5oct6c51
C , and 

oc5 5oct6t51
T , the MFHMM models this data based on the fun-

damental assumption 

 P 1O2 5 1
Ca

C

c51
P 1oc 2q

r2c
P 1or|ŝc 2 , (8)

where ŝc is the estimated hidden sequence of emitting states 
that corresponds to the cth stream observations, obtained by 
means of the Viterbi algorithm, P 1oc 2  is the observation proba-
bility of the cth stream-observed sequence, and P 1or|ŝc2  is the 
coupling density of the observations from the rth stream with 
respect to the states of the cth stream model 

 P 1or|ŝc 2 5q
T

t51
P 1ort|ŝct2 . (9)

The probabilities P 1ort| ŝct 2  of the MFHMM can be modeled by 
means of mixtures of Gaussian densities, similar to the state-
conditional likelihoods of the stream-wise HMMs. However, if 
higher tolerance to outliers is needed, student-t mixture mod-
els may be used instead of Gaussian mixtures, as also men-
tioned in the section “Why Use HMMs to Model the Extracted 
Holistic Representation of the Captured Video Sequences?”  

this selection can be applied to both the probability models of 
the stream-wise HMM states and the interstream coupling 
models of the MFHMM, to further enhance robustness. 

Note also that for each possible value, say i, of ŝct, i.e., for 
each different state of the stream-wise HMMs, a different cou-
pling density model P 1ort|ŝct5 i 2  has to be postulated. Hence, if 
we consider K-state stream-wise HMMs, there is a total of K 
different finite mixture models that must be trained to model 
the coupling densities P 1ort| ŝct 2,  4r, c. 

We should additionally notice that the training and inference 
algorithms of the MFHMM are simple, with low computational 
requirements. EM-based training for the MFHMM is performed 
as follows: At first, a set of initial stream-wise HMMs is obtained, 
by means of the standard EM algorithm for HMMs. 
Subsequently, the state sequences of each stream-wise HMM 
that generate the corresponding training data are extracted by 
means of the standard Viterbi algorithm. Using this informa-
tion, the coupling models comprising the postulated MFHMM 
can be easily trained by means of the EM algorithm, based on 
the definition (9). On the other hand, likelihood-based classifi-
cation is also easy to perform, based on the modeling assump-
tion (8). As we observe, this procedure merely comprises a set of 
simple likelihood computations with respect to the constituent 
stream-wise HMMs and coupling models of the postulated 
MFHMM, as well as an execution of the Viterbi algorithm to 
obtain the state sequence estimates ŝc. 

As we observe, the MFHMM has several desirable properties 
when regarded in the context of the proposed system for visual 
behavior understanding based on the following holistic features: 

State transitions do not necessarily happen simultaneously 1) 
among the information streams, which makes the method 
appropriate for both synchronous and asynchronous camera 
networks. 

If one of the component HMMs fails due to noise or some 2) 
other reason, the rest of the constituent HMMs can still work 
properly. 

It still retains the crucial information about the interdepen-3) 
dencies between the multiple data streams, which CHMMs 
tend to neglect. 

It has simple and fast training and inference algorithms.4) 
Based on these observations, we select the MFHMM as the 

method employed by our system to model and classify the 
obtained multistream sequential data (holistic representations of 
video frame content). We shall empirically justify the appropri-
ateness of this selection in the experimental section of this article. 

EXPERIMENTAL EVALUATION
We have experimentally verified the efficacy of the proposed 
approach using data obtained from a real assembly line of a 
European automobile manufacturer. The obtained data sets 
contain information pertaining to the production process of a 
real vehicle manufacturing facility. The workflow on this assem-
bly line included tasks of picking several parts from racks and 
placing them on a designated cell some meters away where 
welding was performed. Each of the above tasks was regarded as 
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a class of behavioral patterns that had to 
be recognized. The information acquired 
from this procedure could be used for the 
extraction of production statistics or 
anomaly detection. Partial or total occlu-
sions due to the racks made the classifica-
tion task difficult to effect using a single 
camera; for this reason, two synchronized, 
partially overlapping views were used.

We evaluated both the efficacy of the 
proposed system, as well as the appropri-
ateness of its component (building block) 
algorithms, compared to available alterna-
tive algorithms that we could have selected. 
Specifically, we focused on the investiga-
tion of the possible added value gained by 
the information fusion procedure as well as 
the adoption of an outlier-tolerant frame-
work. We compared separate processing of 
the various information sources (streams) 
to application of fusion methods, and adop-
tion of conventional observation models to 
the use of outlier-tolerant ones. We also investigated the profits 
from the application of the semisupervised learning  paradigm in 
the context of our system. 

SETUP
The behaviors we were aiming to model in the examined appli-
cation are briefly described in the following: 

One worker picks Part 1 from Rack 1 and places it on the 1) 
welding cell. 

Two workers pick Part 2a from Rack 2 and place it on the 2) 
welding cell. 

Two workers pick Part 2b from Rack 3 and place it on the 3) 
welding cell. 

A worker picks up Part 3a and Part 3b from Rack 4 and 4) 
places them on the welding cell. 

A worker picks up Part 4 from Rack 1 and places it on the 5) 
welding cell. 

Two workers pick up Part 5 from Rack 5 and place it on the 6) 
welding cell. 

Welding: two workers grab the welding tools and weld the 7) 
parts together.
The workspace configuration and the cameras’ positioning is 

given in Figure 5.
For our experiments, we have used two data sets, each one 

containing 20 segmented sequences representing full assembly 
cycles. Each cycle included all the seven behaviors. The total 
number of frames was approximately 80,000 per camera for 
each data set. In the first data set, the assembly process was 
rather well structured and was performed strictly by two people. 
Noisy objects were present (other persons or vehicles) but rath-
er rare. In the second data set, which was acquired several 
months later, the assembly process was changed in the follow-
ing sense: a third person was present quite often in the scene. 

That person was performing tasks in parallel to the tasks execut-
ed by the other two workers. This made the second data set 
much more challenging because the silhouettes got overlayed 
in a rather random fashion, and, hence, the motion signatures 
were much more difficult to model.

The annotation of the data sets has been done manually. 
Synchronization of the used IP-cameras was effected by 
exploiting the timestamps generated by the server our cameras 
were connected to. This provided a good estimate of timing, 
without guaranteeing perfect synchronization though, since 
the cameras were not hardware synchronized and were actual-
ly working independently. 

In the above tasks we noticed relatively high intraclass similar-
ity as well as high interclass dissimilarity in the PCH images (see, 
e.g., Figures 6 and 7 for Tasks 2 and 3, respectively). To produce 
the PCH images we used the blobs calculated from background 
subtraction. Therefore, we assumed that the motion signatures 
for each task could be well represented by sequences of holistic 
features (one feature vector per frame): we used the area, the cen-
ter of gravity, and the Zernike moments (norm and phase) up to 
sixth order. The Zernike moments were calculated in down-scaled 
rectangular regions of interest (approximately 15,000 pixels) to 
allow for real-time performance (approximately 50-60 frames/s). 
From this set, we removed the values of four phases which were 
constant; this way, a good 31-dimensional scene representation 
was eventually obtained. The resulting dimensionality of the 
obtained feature vectors allowed for a high efficiency of the 
employed HMMs, when using relatively moderate model sizes. 

For activity recognition we used three-state HMMs with a 
single mixture component per state to model each of the 
seven tasks described above; this was a good tradeoff between 
performance and efficiency. In all cases, we employed full 
covariance matrices for the adopted observation (mixture) 

Rack 5
Rack 4

Rack 3

Camera 1

Camera 2

Rack 2 Rack 1

3,
85

0 
m

m

8,400 m
m

8,620 mm

Welding Cell

[FIG5] Depiction of a work cell along with the position of the cameras and the Racks 
1–5. The recognized behaviors are associated with transferring each part from the 
respective pallet and putting it on the welding cell. Additionally, the task of welding 
is also recognized.
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models. We trained all our models using 
the EM algorithm. 

The stream weights employed by the 
considered fused models were selected 
based on the reliability of the individual 
streams. More specifically, the weight fac-
tors were roughly proportional to the clas-
sification accuracies of each individual 
stream (see, e.g., [19]). For more depend-
able results, in our experiments we used 
cross-validation, by repeating the 
employed training algorithms several 
times, where in each repetition all scenari-
os were considered except for one used for 
testing (leave-one-out cross-validation). 

The reported accuracies were calculat-
ed as the percentages of the behavior 
instances that were correctly classified 
(for all seven tasks over all 20 scenarios—
140 instances in total per data set). 

CHALLENGES FOR STATE-OF-THE-
ART OBJECT-BASED METHODS
To showcase the merits of the proposed 
system, we initially performed experi-
ments using popular methods that rely on 
object-based representations. In particu-
lar, we have tested a tracker and a promi-
nent person detector.

The tracker was based on standard parti-
cle filtering and the employed features were 
the color histogram and the edges of the 
blobs corresponding to the human figure. 
Each human was represented by a rectangle 
(x and y position, width, and height). The 
measurement probability for each sample 
was calculated based on how well the sam-
ple fitted the model. We used the 
Bhattacharyya distance for histogram com-
parison and an exponential function to cal-
culate the edge distance from the 
rectangles. More details can be found in our 
previous work [20]. We used no more than 
100 particles to have a performance close to 
real time. As expected, all our study cases 
were extremely challenging and the tracker 
was losing the target very often. Therefore, 
no behavior recognition was meaningful. 
Expectably enough, the most frequent 
errors were due to the occlusions caused 
either by the racks, or by other workers due 
to their similar appearance (see Figure 8). 
The target deformations, the background 
clutter, and the illumination changes made 
the problem even more challenging. As we 

[FIG6] Key frames for the Task 2, Camera 2: (a)–(c) acquired images, (d)–(f) background 
subtraction, and (g)–(i) PCH images.

(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

[FIG7] Key frames for the Task 3, Camera 2: (a)–(c) acquired images, (d)–(f) background 
subtraction, and (g)–(i) PCH images.

(a) (b) (c)

(d) (e) (f)

(g) (h) (i)
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found empirically, it would still remain 
rather unrealistic to expect consistent 
tracking for a whole scenario under such 
adverse conditions, even if we were employ-
ing more advanced tracking methods or 
more complex visual features. 

Given the experienced unreliability of 
the tracking algorithms, independently 
seeking persons in each frame arose as a 
more appropriate approach. To this end, 
we employed a popular person detector, 
specifically the one presented in [21]. Its 
operation is based on the idea that the dis-
tribution of local intensity gradients or 
edge directions can often characterize 
local object appearance and shape 
 relatively well, even without precise 
knowledge of the corresponding gradient 
or edge positions. Hence, by using a grid 
of overlapping cells and a classifier, we can 
decide for the existence of humans in each 
cell. In our experiments, we used the 
implementation provided by the authors 
of [21]; the detected rectangles were transformed to vectors 
using the same Zernike moments implementation as the one we 
used in our system. For our experimentations, we used the first 
available data set; the trained HMMs were employing Gaussian 
observation models. The accuracy was 17.85% and 56.42% for 
Stream 1 and 2, respectively. Occlusions were far more frequent 
in Stream 1 than in Stream 2, and that was reflected in the 
results, thus explaining the significant dif-
ference in the obtained recognition rates 
on the two streams. Several false positives 
were also observed, obviously due to the 
high background clutter in the scene.

SUPERVISED LEARNING
Further, we evaluated the proposed 
approach in the same experimental set-
ting. We considered application of the 
mainstream HMM for individual stream 
modeling, as well as various HMM fusion 
approaches, particularly the FHMM, 
SHMM, PHMM, and MFHMM. We experi-
mented with the Gaussian observation 
model as well as with the multivariate stu-
dent-t model. For the mixture model rep-
resenting the interstream interactions in 
the context of the MFHMM, we used mix-
ture models comprising two components. 

The obtained results are given in 
Figure 9(a) and (b) for the first and second 
data sets, respectively. It becomes obvious 
that the sequences of holistic features and 
the respective HMMs represented much 

more successfully the well-structured assembly process (Data 
Set 1) than the less structured one (Data Set 2). The yielded rep-
resentation is illustrated in Figures 6 and 7 for examples of the 
tasks two and three, from the Stream (camera) 2 of Data Set 1; 
the disambiguation capacity attained by using holistic represen-
tations based on PCH images is obvious. The cameras were posi-
tioned with the goal to provide complementary views. The 

(a)

(b)

[FIG8] Typical examples of tracking failure. (a) The tracker fails as the worker gets 
occluded by the rack. (b) A tracker is misled by the occurrence of another worker 
with similar appearance.
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viewpoint of Camera 1 generally provided better differentiation 
between Tasks 4 and 6, while the performance was not as good 
for the other tasks, especially when trying to differentiate Task 1 
from Task 5, due to occlusions. On the other hand, Camera 2 
was not so heavily occluded, and apart from Tasks 4 and 6, 
which sometimes could look similar, it provided better views. 
This explains the classification performances when using the 
individual streams in a separate manner. 

Information fusion provided results that were at least as 
accurate as the best stream-wise model, when implemented in 
the form of an MFHMM. This is due to the fact that the state 
interdependencies were successfully captured by the MFHMM, 
while no strict synchronicity was assumed. This was a signifi-
cant advantage in the context of our experimental setup, since 
our cameras were not hardware-synchronized.

The PHMM provided accuracy slightly inferior or better, 
compared to the best individual stream model. However, the 
PHMM assumes that the streams are completely asynchronous, 
thus no state interdependecies could be exploited. As a conse-
quence, the results were inferior to the MFHMM. 

The accuracy deteriorated significantly when we assumed 
perfect synchronization by using SHMMs, or even worse when 

considering feature-level fusion. Obviously, such an assumption 
was not valid in our setup. Additionally, as expected, feature 
fusion was unable to exploit the correlation of the different 
sources, in contrast to the other methods. 

Finally, the employment of the student-t HMM provided 
some extra accuracy, and thus proved its utility in visual behav-
ior recognition applications, where outlier robustness is always 
of interest. The improvement was more visible in the second 
data set where much more noise was present. 

We would like to mention the case of the PHMM in the first 
experiment, which gave lower accuracy than HMM2. By setting 
the weight of the Stream 2 to 1 and the weight of Stream 1 to 0 
(instead of using the rough stream reliability as explained in the 
subsection “Setup”) we would be yielding exactly the results of 
HMM2 (no fusion would be then actually affected). This out-
come is justified by the fact that the PHMM employs directly the 
models HMM1 and HMM2. The same remark does not apply to 
fusion schemes which assume state coupling (e.g., the SHMM), 
because the respective stream-wise models generally differ from 
HMM1 and HMM2. 

SEMISUPERVISED LEARNING
Finally, to assess the utility of semisupervised learning in the con-
text of the considered holistic visual behavior understanding 
framework, we repeated one of our previous experiments under 
the semisupervised learning paradigm. Specifically, we considered 
the case of the first assembly process (two workers). We started 
from models trained with half our data set, further incorporating 
an additional 5–30% of the available samples (1–6 sequences/
class) of the available “unlabeled” (test) set to conduct semisuper-
vised learning, measuring the effect of this procedure on the 
obtained classification performance. For our investigations, we 
limited ourselves to the application of a simple self-training algo-
rithm, with all the unlabeled samples being used having the same 
weight (l5 0.8) in the model training procedure. 

In Figure 10, we illustrate the obtained results. As we observe, 
the application of the semisupervised approach offers an increase 
in model performance. This is even more apparent in the case of 
the student-t HMMs, which appear to work considerably better 
when an additional semisupervised training procedure is 
employed for their learning. This behavior can be attributed to 
the relatively small sizes of the data sets used for model training 
in our experiments. Clearly, however, it does also highlight the 
advanced capabilities of the student-t observation model in data 
modeling and pattern recognition applications under adverse, 
real-world settings (in terms of the contamination of the observ-
able data with noise and outliers). 

DISCUSSION
We have experimentally explored the challenges posed to object-
based methods, such as tracking or person detectors, when con-
sidering visual behavior recognition in real, complex scenes. As 
demonstrated, the performance of such state-of-the-art 
approaches was significantly lower compared to the rates 
obtained by the proposed system. This is mainly attributed to the 
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fact that the targets were often partially occluded and deformed, 
hence unrecognizable by these methods. However, this was not 
the case for our novel system, which even under this setting was 
still capable of providing reliable behavior signatures. 

As we showed, holistic scene representation is very well 
applicable in monitoring and classifying rather  structured 
processes, such as the production tasks in an assembly line. 
Partial occlusions or deformations were proven to be less than 
a problem, as long as they occur in a statistically consistent 
way, allowing for them to be learned by behavioral models. 

An important limitation of holistic scene representation con-
cerns the fact that no detailed object-based descriptions are pos-
sible, like those obtainable when assuming successful detection 
and tracking. 

However, such an expectation from an automatic visual rec-
ognition system may be way too unrealistic in real-life settings. 
Furthermore, we saw that the less structured the modeled visual 
process is, the less accurate behavior recognition should be 
expected to be. 

Moreover, holistic representations do not support, by their 
nature, object models that could be possibly used for target 
disambiguation or hypothesis evaluation. This results in high-
er dependency on the view point; yet, we saw that this problem 
can be addressed to a certain extent when multiple cameras 
are available, providing better views and thus giving higher 
task differentiation capabilities. Indeed, a flexible fusion 
approach, such as the MFHMM, which is capable of exploiting 
the correlation of information in multiple cameras, can signif-
icantly enhance the performance. 

We have also seen that the employment of outlier-tolerant 
methods, such as the student-t observation model, appears to add 
significant value to holistic-based behavior recognition approach-
es, by mitigating the effect of illumination changes or appearance 
of unexpected irrelevant objects in the observed scenes. 

Finally, as empirically indicated in our experimental section, 
a good deal of the effort imposed by the entailed labor intensive 
task of raw data annotation can be alleviated by using semisu-
pervised learning. 
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